Identifikasi Keberadaan Hidrokarbon Menggunakan Inversi Impedansi Akustik dengan Algoritma Artificial Neural Network (ANN)
Abstract
Hydrocarbons are the main energy source in the world, especially in Indonesia, this is what makes hydrocarbons a natural resource that has been extensively explored to determine the presence of hydrocarbons. The exploration used is the Geophysics method, namely the seismic method and the well logging method, both methods are processed to provide an overview of the subsurface. The data processing technique used is acoustic impedance inversion modeling which aims to determine the characteristics of the reservoir based on changes in the acoustic impedance value in each layer. In this study using model-based acoustic impedance inversion using an artificial neural network (ANN) algorithm and the results obtained in the inversion analysis obtained an error of 0.002, so that the model can be used on seismic trace data to produce an acoustic impedance model. modeling section with a value of less than 5000 which may mean that there are hydrocarbons in the research location.
Keywords: Artificial Neural Network, Hydrocarbons, Acoustic Impedance, Inversion.
References
[2] Sarip, T. (2015). Petroleum System. Retrieved from https://petroleum-learning.blogspot.com/2015/12/pengertian-petroleum-system-petroleum.html#
[3] Elsalama, N. (2020). Aplikasi Metode Colored Inversion untuk Karakterisasi Reservoar dengan Menggunakan Bahasa Pemograman Python (Doctoral dissertation).
[4] Permana, U. (2015). Pengolahan Data Seismlk Refleksi 2d Untuk Memetakan Struktur Bawah Permukaan Lapangan X Prabumulihsumatra Selatan. ALHAZEN Journal of Physics, 2(1).
[5] Ernia, Y., Djayus, D., & Supriyanto, S. (2020). Identifikasi Sebaran dan Ketebalan Lapisan Batubara Berdasarkan Data Well Logging di PT Borneo Emas Hitam Loa Tebu Kalimantan Timur. Geosains Kutai Basin, 3(2).
[6] Simanjuntak, A. S. (2014). Karakterisasi Reservoar Hidrokarbon Pada Lapangan “TAB” dengan Menggunakan Pemodelan Inversi Impedansi Akustik. JGE (Jurnal Geofisika Eksplorasi), 2(01), 2-13.
[7] Aviani, Nesya. (2020). Pemodelan Hasil Analisis Sederhana Nilai Impedansi Akustik P – Wave Pada Formasi Sarvak Menggunakan Matlab. Jurnal Indonesia Sosial Teknologi, p-ISSN: 2723-6609. Surabaya: Institut Teknologi Sepuluh Nopember.
[8] Febridon, N M., Mulyatno, B. S., & Dewanto, O. (2018). Analisis Sifat Fisis pada Reservoar Batupasir Menggunakan Metode Seismik Inversi Impedansi Akustik (AI) dan Multiatribut pada Lapangan “MNF” Cekungan Bonaparte. Jurnal Geofisika Eksplorasi, 4(2), 3-14.
[9] Alpaydin, E. (2020). Introduction to Machine Learning. MIT press.
[10] Kumar, A. (2003). Neural Network Based Detection of Local Textile Defects. Pattern Recognition, 36(7), 1645-1659.
[11] Nugroho, I. (2020). Perbandingan Prediksi Fasies Melalui Beberapa Machine Learning (Doctoral dissertation).
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.