Identifikasi Struktur Bawah Permukaan Area Tempuran, Magelang, Jawa Tengah dengan Metode Gravitasi GGMplus

Authors

  • Nisrina Hasna Mustofa Program Studi Fisika, Fakultas FMIPA, Universitas Negeri Yogyakarta
  • Roma Widiyansari Program Studi Fisika, Fakultas FMIPA, Universitas Negeri Yogyakarta
  • Khafidh Nur Aziz Program Studi Fisika, Fakultas FMIPA, Universitas Negeri Yogyakarta
  • Denny Darmawan Program Studi Fisika, Fakultas FMIPA, Universitas Negeri Yogyakarta
  • Laras Anindita Maharani Program Studi Pendidikan Fisika, Fakultas FMIPA, Universitas Negeri Yogyakarta
  • Aqheela Aphrodita Zainfa Program Studi Pendidikan Fisika, Fakultas FMIPA, Universitas Negeri Yogyakarta
  • Rahmawati Fitrianingtyas Jurusan Teknik Geofisika, Fakultas Teknologi Mineral, Universitas Pembangunan Nasional “Veteran” Yogyakarta
  • Ika Maulita Program Studi Fisika, Fakultas MIPA, Universitas Jenderal Soedirman

DOI:

https://doi.org/10.30872/054gd652

Keywords:

Gravity Method, Fault Structure, Tempuran Geothermal Manifestation Area

Abstract

This research was conducted in the Tempuran geothermal manifestation area, Magelang, Central Java, specifically in a location with indications of fault structure. The study aims to identify the subsurface structural conditions associated with the fault through the distribution pattern of gravity anomalies. This research used gravity method, with the data are gravity disturbance from GGMplus with a resolution of approximately 220 meters. The gravity disturbance data were processed to obtain Complete Bouguer Anomaly (CBA) data, which were then subjected to upward continuation and forward modeling. The CBA results reveal a high anomaly in the southern part of the study area, extending southwestward, which correlates with the Menoreh Mountains. A low anomaly is found in the northeastern part of the area, corresponding to a lowland region. The 2D modeling results indicate that the study area is composed of rocks with densities ranging from 1.00 g/cm³ to 1.60 g/cm³, interpreted as alluvium; 1.75 g/cm³ to 2.73 g/cm³, interpreted as the Kebobutak Formation; and 2.50 g/cm³, interpreted as deposits from the
young Sumbing Volcano. Additionally, rocks with densities ranging from 2.40 g/cm³ to 2.77 g/cm³ are interpreted as andesitic intrusions, while rocks with a density of 2.83 g/cm³ are interpreted as dacitic intrusions. The presence of a normal fault is identified within the Kebobutak Formation and the andesitic intrusion, overlain by alluvial deposits.

Downloads

Download data is not yet available.

References

[1]. J. A. Katili, “Volcanism and plate tectonics in the Indonesian island arcs,” Tectonophysics, vol. 26, no. 3–4, pp. 165–188, Apr. 1975, doi: 10.1016/0040-1951(75)90088-8.

[2]. Geological Research and Development Center (GRDC), Jalan Diponegoro 57, Bandung, Indonesia and T. O. Simandjuntak, “Neogene tectonics and orogenesis of Indonesia,” Bull. Geol. Soc. Malays., vol. 33, pp. 43–64, Nov. 1993, doi: 10.7186/bgsm33199305.

[3]. S. G. Prakoso, A. A. Wijaya, and F. A. A. Putra, “Indonesia’s Disaster Resilience Against Volcanic Eruption: Lessons from Yogyakarta,” KnE Soc. Sci., Mar. 2022, doi: 10.18502/kss.v7i5.10544.

[4]. Volcanological Survey of Indonesia, JI. Diponegoro 57, Bandung 40122, Indonesia, A. D. Wirakusumah, and R. Bacharudin, “Volcanic hazard mapping in Indonesia,” Bull. Geol. Soc. Malays., vol. 43, pp. 205–213, Dec. 1999, doi: 10.7186/bgsm43199922.

[5]. Peta sumber dan bahaya gempa Indonesia tahun 2017, Cetakan pertama. Bandung: Pusat Penelitian dan Pengembangan Perumahan dan Permukiman, Badan Penelitian dan Pengembangan, Kementerian Pekerjaan Umum, 2017.

[6]. A. Koulali et al., “The kinematics of crustal deformation in Java from GPS observations: Implications for fault slip partitioning,” Earth Planet. Sci. Lett., vol. 458, pp. 69–79, Jan. 2017, doi: 10.1016/j.epsl.2016.10.039.

[7]. P. Supendi, A. D. Nugraha, N. T. Puspito, S. Widiyantoro, and D. Daryono, “Identification of active faults in West Java, Indonesia, based on earthquake hypocenter determination, relocation, and focal mechanism analysis,” Geosci. Lett., vol. 5, no. 1, p. 31, Dec. 2018, doi: 10.1186/s40562-018-0130-y.

[8]. W. Rahardjo, Sukandarrumidi, and H. M. D. Rosidi, Peta Geologi Lembar Yogyakarta, Jawa. Direktorat Geologi, Departemen Pertambangan Republik Indonesia., 1975.

[9]. M. Iqbal and B. R. Juliarka, “Geothermal System in Parang Wedang, Yogyakarta, Indonesia,” J. Eng. Technol. Sci., vol. 54, no. 4, p. 220406, Jul. 2022, doi: 10.5614/j.eng.technol.sci.2022.54.4.6.

[10]. Salma Khoirunnisa et al., “ANALYSIS OF THE EXISTENCE OF GEOTHERMAL MANIFESTATIONS USING FAULT FRACTURE DENSITY (FFD) IN TEMPURAN DISTRICT, MAGELANG REGENCY,” KURVATEK, vol. 9, no. 1, pp. 63–72, Apr. 2024, doi: 10.33579/krvtk.v9i1.4701.

[11]. M. Dentith and S. T. Mudge, Geophysics for the Mineral Exploration Geoscientist:, 1st ed. Cambridge University Press, 2014. doi: 10.1017/CBO9781139024358.

[12]. W. J. Hinze, R. R. B. Von Frese, and A. H. Saad, Gravity and Magnetic Exploration: Principles, Practices, and Applications, 1st ed. Cambridge University Press, 2012. doi: 10.1017/CBO9780511843129.

[13]. A. Barkah and Y. Daud, “Identification of structural geology at the Tangkuban Parahu geothermal area, West Java based on remote sensing and gravity data,” presented at the THE 4TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND SCIENCE EDUCATION (ICoMSE) 2020: Innovative Research in Science and Mathematics Education in The Disruptive Era, Malang, Indonesia, 2021, p. 040006. doi: 10.1063/5.0038809.

[14]. U. Gunadi Putra, W. Jhanesta, and Iskandarsyah, “Interpretation of Subsurface Fault Through Multi-Level Second Vertical Derivative Gravitational Data in Bittuang Geothermal Working Area, South Sulawesi, Indonesia,” J. Geosci. Eng. Environ. Technol., vol. 6, no. 4, pp. 184–191, Dec. 2021, doi: 10.25299/jgeet.2021.6.4.7744.

[15]. R. J. Blakely, Potential Theory in Gravity and Magnetic Applications, 1st ed. Cambridge University Press, 1995. doi: 10.1017/CBO9780511549816.

[16]. C. Hirt, S. Claessens, T. Fecher, M. Kuhn, R. Pail, and M. Rexer, “New ultrahigh‐resolution picture of Earth’s gravity field,” Geophys. Res. Lett., vol. 40, no. 16, pp. 4279–4283, Aug. 2013, doi: 10.1002/grl.50838.

[17]. W. M. Telford, L. P. Geldart, and R. E. Sheriff, Applied geophysics, 2. ed., [Repr.], Transferred to digital print. Cambridge: Cambridge Univ. Pr, 2004.

[18]. D. Nagy, “The prism method for terrain corrections using digital computers,” Pure Appl. Geophys., vol. 63, no. 1, pp. 31–39, Dec. 1966, doi: 10.1007/BF00875156.

[19]. M. F. Kane, “A COMPREHENSIVE SYSTEM OF TERRAIN CORRECTIONS USING A DIGITAL COMPUTER,” GEOPHYSICS, vol. 27, no. 4, pp. 455–462, Aug. 1962, doi: 10.1190/1.1439044.

Downloads

Published

30-12-2025

How to Cite

Identifikasi Struktur Bawah Permukaan Area Tempuran, Magelang, Jawa Tengah dengan Metode Gravitasi GGMplus. (2025). Progressive Physics Journal, 6(2), 581-593. https://doi.org/10.30872/054gd652

Most read articles by the same author(s)