Analisis Struktur Bawah Permukaan Daerah Panas Bumi Pacitan Berdasarkan Data Gravitasi GGMPlus
DOI:
https://doi.org/10.30872/3rdp3n60Keywords:
Gravity Method, Complete Bouge Anomaly, Second Vertical Derivative, Pacitan GeothermalAbstract
This study aims to identify the subsurface structure of the geothermal system in the Pacitan area, East Java, using gravity methods based on GGMPlus data. The analysis procedures include terrain correction to obtain the Complete Bouguer Anomaly (CBA), separation of regional and local anomalies through upward continuation, as well as two-dimensional (2D) modeling and Second Vertical Derivative (SVD) analysis to identify fault structure. The CBA values in the study area range from 107 to 115.5 mGal, where high anomalies correlate with volcanic breccia rocks and highlands, while low anomalies indicate the presence of sandstone in lowland areas. Geothermal manifestations in the form of hot springs exhibit gravity anomalies of approximately 110.5–111.5 mGal and are situated in the north of the fault in a northwest–southeast direction. The 2D modeling results reveal the presence of reservoir rocks consisting of sandstone and clay with densities ranging from 1.79 to 2.20 g/cm³, and lava rocks with densities of 2.80–2.90 g/cm³ acting as cap rocks. SVD analysis indicates the existence of a normal fault directly associated with geothermal fluid pathways. This study demonstrates that the GGMPlus gravity method is effective for preliminary exploration of geothermal systems in potential areas such as Pacitan.
Downloads
References
[1] “Geothermal Power Plants of Indonesia,” in Geothermal Power Plants, Elsevier, 2016, pp. 403–426. doi: 10.1016/b978-0-08-100879-9.00014-8.
[2] K. D. Permadi and Y. Yuwono, “PEMETAAN POTENSI PANAS BUMI (GEOTHERMAL) UNTUK MENDUKUNG PROGRAM ENERGI NASIONAL JAWA TIMUR (STUDI KASUS : G. LAMONGAN, KAB. PROBOLINGGO),” Geoid, vol. 8, no. 2, Art. no. 2, Feb. 2013, doi: 10.12962/j24423998.v8i2.730.
[3] “Volcanoes of Indonesia,” in The Illustrated History of Natural Disasters, Dordrecht: Springer Netherlands, 2010, pp. 103–105. doi: 10.1007/978-90-481-3325-3_19.
[4] I. Setiawan et al., “Geothermal and volcanism in west Java,” IOP Conf. Ser. Earth Environ. Sci., vol. 118, p. 012074, Feb. 2018, doi: 10.1088/1755-1315/118/1/012074.
[5] “Cenozoic arc processes in Indonesia: Identification of the key influences on the stratigraphic record in active volcanic arcs,” in Special Paper 436: Formation and Applications of the Sedimentary Record in Arc Collision Zones, Geological Society of America, 2008, pp. 27–54. doi: 10.1130/2008.2436(03).
[6] J. Andrifa, N. Sulaksana, D. Gentana, and M. Sulastri, “Geological Lineament Pattern and Geomorphic Indices Characteristic Related To Geothermal Manifestation Appearance: A Case Study from Gunung Talang District and Its Surroundings, Solok Regency, West Sumatra Province, Indonesia,” Int. J. Sci. Res. Sci. Technol., pp. 323–336, May 2021, doi: 10.32628/ijsrst218358.
[7] V. Soraya, “Identifikasi Patahan Kawasan Blawan-Ijen Berdasarkan Data Anomali Gravitasi GGMplus dengan Analisa Second Vertical Derivative (SVD),” Thesis, Fakultas Matematika dan Ilmu Pengetahuan Alam, 2020. Accessed: July 14, 2025. [Online]. Available: https://repository.unej.ac.id/xmlui/handle/123456789/102557
[8] F. Sáez-Leiva, D. E. Hurtado, M. Gerbault, J. Ruz-Ginouves, P. Iturrieta, and J. Cembrano, “Fluid flow migration, rock stress and deformation due to a crustal fault slip in a geothermal system: A poro-elasto-plastic perspective,” Earth Planet. Sci. Lett., vol. 604, p. 117994, Feb. 2023, doi: 10.1016/j.epsl.2023.117994.
[9] B. Adhitya, Y. R. Putra, and A. Ar, “MANIFESTASI PANAS BUMI SERTA REKOMENDASI PEMANFAATANNYA DI DESA KOTO SANI DAN SEKITARNYA, KECAMATAN X KOTO SINGKARAK, KABUPATEN SOLOK, PROVINSI SUMATRA BARAT,” J. ONLINE Phys., vol. 8, no. 2, Art. no. 2, Apr. 2023, doi: 10.22437/jop.v8i2.22184.
[10] M. Hochstein and S. Sudarman, “History of geothermal exploration in Indonesia from 1970 to 2000,” Geothermics, vol. 37, pp. 220–266, June 2008, doi: 10.1016/j.geothermics.2008.01.001.
[11] M. Brehme, I. Moeck, Y. Kamah, G. Zimmermann, and M. Sauter, “A hydrotectonic model of a geothermal reservoir – A study in Lahendong, Indonesia,” Geothermics, vol. 51, pp. 228–239, July 2014, doi: 10.1016/j.geothermics.2014.01.010.
[12] M. B. Puspita, A. N. Aprilla, S. Maryanto, and R. P. H. Sari, “Preliminary Study of Subsurface Geological Setting Based on the Gravity Anomalies in Karangrejo-Tinatar Geothermal Area, Pacitan Regency, Indonesia,” Int. J. Geophys., vol. 2024, pp. 1–9, Jan. 2024, doi: 10.1155/2024/9976867.
[13] S. Mulyaningsih, Y. R. S. Sukisman, and R. A. Hidayah, “Hydrothermal Alteration and Ore Metal Mineralisation at Temon, Pacitan, East Jawa, Indonesia.,” J. Geosci. Eng. Environ. Technol., vol. 6, no. 1, pp. 24–33, Mar. 2021, doi: 10.25299/jgeet.2021.6.1.6368.
[14] R. Lewerissa, N. Alzair, and L. Lapono, “Identification of Ransiki fault segment in South Manokwari Regency, West Papua Province, Indonesia based on analysis of a high-resolution of global gravity field: Implications on the Earthquake Source Parameters,” IOP Conf. Ser. Earth Environ. Sci., vol. 873, no. 1, p. 012048, Oct. 2021, doi: 10.1088/1755-1315/873/1/012048.
[15] S. Koesuma, A. Salsabila Sanjaya, and N. Nuryani, “Identification of geothermal energy sources using gravity method (Satellite Gravimetry) in the Mount Lawu Area,” J. Phys. Conf. Ser., vol. 2945, no. 1, p. 012030, Jan. 2025, doi: 10.1088/1742-6596/2945/1/012030.
[16] E. W. Sugiyo and Y. Daud, “Subsurface structure identification of ‘X’ geothermal prospect area based on gravity and magnetotelluric data,” IOP Conf. Ser. Earth Environ. Sci., vol. 538, no. 1, p. 012056, July 2020, doi: 10.1088/1755-1315/538/1/012056.
[17] J. d’Amour Uwiduhaye, H. Mizunaga, and H. Saibi, “A case history: 3-D gravity modeling using hexahedral element in Kinigi geothermal field, Rwanda,” Arab. J. Geosci., vol. 12, no. 3, Feb. 2019, doi: 10.1007/s12517-019-4249-8.
[18] C. Hirt, S. Claessens, T. Fecher, M. Kuhn, R. Pail, and M. Rexer, “New ultrahigh‐resolution picture of Earth’s gravity field,” Geophys. Res. Lett., vol. 40, no. 16, pp. 4279–4283, Aug. 2013, doi: 10.1002/grl.50838.
[19] A. Pascaning Setiahadiwibowo, A. Setiawan, S. Husein, and S. Sismanto, “SUBSURFACE STRUCTURAL MODELLING USING THE GRAVITY METHOD IN THE PACITAN AREA, INDONESIA BASED ON DERIVATIVE ANALYSIS AND MODEL INVERSION,” Rud.-Geol.-Naft. Zb., vol. 40, no. 1, pp. 51–61, 2025, doi: 10.17794/rgn.2025.1.4.
[20] I. Purwaningsih, K. N. Aziz, and R. Fitrianingtyas, “Identifikasi Patahan dan Struktur Bawah Permukaan Kawasan Potensi Panas Bumi Rawa Dano Provinsi Banten Menggunakan Data Gravitasi GGMPlus,” J. Geosains Dan Teknol., vol. 6, no. 1, pp. 43–52, Aug. 2023, doi: 10.14710/jgt.6.1.2023.43-52.
[21] K. N. Aziz, E. Hartantyo, and S. W. Niasari, “The Study of Fault Lineament Pattern of the Lamongan Volcanic Field Using Gravity Data,” J. Phys. Conf. Ser., vol. 1011, p. 012025, Apr. 2018, doi: 10.1088/1742-6596/1011/1/012025.
[22] B. Sudrajad, “Analisis Deskriptif Perbandingan Data Sekunder Gravitasi GGMplus Terhadap Data Gravitasi Lapangan Panas Bumi Gunung Lawu dan Data Gravitasi Stasiun Referensi (gravity base station) di Pulau Papua,” J. Fis. Papua, vol. 2, no. 1, pp. 25–34, Feb. 2023, doi: 10.31957/jfp.v2i1.22.
[23] Laily Nur Hofi, S. Maryanto, A. Susilo, R. Andinisari, and Sri Dwi Wuryani, “Fault Detection and Subsurface Model Based on Gravity Data in Pronojiwo, Lumajang, Indonesia,” Evergreen, vol. 11, no. 3, pp. 1666–1675, Sept. 2024, doi: 10.5109/7236820.
[24] H. S. Yasmin et al., “2D Geological Structure Identification in Mount Ciremai Geothermal Area using the GGMplus Data.,” IOP Conf. Ser. Earth Environ. Sci., vol. 1344, no. 1, p. 012017, May 2024, doi: 10.1088/1755-1315/1344/1/012017.
[25] M. A. Naufal and M. S. Rosid, “Structure identification of geothermal field ‘X’ using ML-SVD method of gravity data,” IOP Conf. Ser. Mater. Sci. Eng., vol. 854, no. 1, p. 012055, May 2020, doi: 10.1088/1757-899x/854/1/012055.
[26] M. Goli, “Challenges in defining of Bouguer gravity anomaly,” J. Earth Space Phys., vol. 40, no. 2, pp. 97–111, June 2014, doi: 10.22059/jesphys.2014.50635.
[27] W. M. Telford, L. P. Geldart, and R. E. Sheriff, Applied geophysics, 2. ed., [Repr.], Transferred to digital print. Cambridge: Cambridge Univ. Pr, 2004.
[28] M. M. Ibrahim, P. Utami, and I. B. Raharjo, “Modeling and Interpretation of Geothermal System Components Using the Gravity Method at the ‘X’ Geothermal,” J. Geosci. Eng. Environ. Technol., vol. 9, no. 2, pp. 180–187, June 2024, doi: 10.25299/jgeet.2024.9.2.13032.
[29] H. Kebede, A. Alemu, and S. Fisseha, “Upward continuation and polynomial trend analysis as a gravity data decomposition, case study at Ziway-Shala basin, central Main Ethiopian rift,” Heliyon, vol. 6, no. 1, p. e03292, Jan. 2020, doi: 10.1016/j.heliyon.2020.e03292.
[30] H. Zeng, D. Xu, and H. Tan, “A model study for estimating optimum upward-continuation height for gravity separation with application to a Bouguer gravity anomaly over a mineral deposit, Jilin province, northeast China,” GEOPHYSICS, vol. 72, no. 4, pp. I45–I50, July 2007, doi: 10.1190/1.2719497.
[31] X. Meng, L. Guo, Z. Chen, S. Li, and L. Shi, “A method for gravity anomaly separation based on preferential continuation and its application,” Appl. Geophys., vol. 6, no. 3, pp. 217–225, Sept. 2009, doi: 10.1007/s11770-009-0025-y.
[32] Z. Sheng, M. Xiaohong, Z. Minghua, C. Zhaoxi, X. Chunxiao, and L. Yajie, “The improved residual node density based gravity forward method and its application,” J. Appl. Geophys., vol. 159, pp. 765–772, Dec. 2018, doi: 10.1016/j.jappgeo.2018.10.020.
[33] S. Alawiyah et al., “Vertical Gradient Modeling of Borehole Gravity and Its Application for Identifying the Subsurface Layer Boundaries and Estimating the Reservoir Porosity in the ABC Field,” in Proceedings of the 11th SEGJ International Symposium, Yokohama, Japan, 18-21 November 2013, Yokohama, Japan: Society of Exploration Geophysicists of Japan, Nov. 2013, pp. 152–155. doi: 10.1190/segj112013-039.
[34] S. M. Irawati, A. Y. Paembonan, I. A. Putri, and G. M. Ekawati, “A Comparative Study of Tilt Derivative (TDR) and Second Vertical Derivative (SVD) from Gravity Data, Case Study: Umbul Niti Geothermal Field,” in 2023 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS), Surabaya, Indonesia: IEEE, Dec. 2023, pp. 220–224. doi: 10.1109/agers61027.2023.10490709.
[35] U. G. Putra, W. Jhanesta, and Iskandarsyah, “Interpretation of Subsurface Fault Through Multi-Level Second Vertical Derivative Gravitational Data in Bittuang Geothermal Working Area, South Sulawesi, Indonesia,” J. Geosci. Eng. Environ. Technol., vol. 6, no. 4, pp. 184–191, Dec. 2021, doi: 10.25299/jgeet.2021.6.4.7744.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Progressive Physics Journal

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

