Kaitan konduktivitas listrik dengan konsentrasi larutan garam dapur

  • Sapna Maharani Program Studi Fisika FMIPA Universitas Mulawarman
  • Suhadi Muliyono Program Studi Fisika FMIPA Universitas Mulawarman
  • Erlinda Ratnasari Putri Program Studi Fisika FMIPA Universitas Mulawarman

Abstract

Research of the relationship between electrical conductivity and the concentration of table salt solution in several brands of table salt, namely brand A, brand B and brand C, has been done. Electrical conductivity () is used as the dependent variable, while concentration (C) is used as the independent variable. The concentration values are 0.1%, 0.2%, …, 0.7% for each brand of table salt. Measurements of electrical conductivity  using a tool Conductivity Metertype pH/EC-983. Next, the average of the result of the measurements of electrical conductivity (σ ̅) are plotted against the concentration (C) of the table salt solution for the each brand of table salt, where each of the result is a straight line (linear) that it has a positive gradient/slope, that is σ ̅=(1360000C+694)µS/cm  for brand A table salt, σ ̅=(1315300C+644)µS/cm brand B table salt and σ ̅=(1281700C+566)µS/cmfor brand C table salt. It seems that the gradient/slope of the straight lines in the various brands of table salt is almost the same, which it means that in general the content of ions in the various brands of legal table salt is relatively not much different. While the positive value of the gradient have the meaning that the higher the concentration of table salt solution, the higher the value of the electrical conductivity, which it is theoretically compatible with the physical concept.

Downloads

Download data is not yet available.

References

[1] M. A. Omar, “Superconductivity” in Elementary Solid State Physics, Massachusetts, USA: Addison-Wesley, 1975, pp. 497.
[2] C. Kittel, “Free Electron Fermi Gas” in Introduction Solid State Physics, Ed. 7, New York, USA: John Wiley, 1996, pp. 161.
[3] K. Mark, Salt: A World History, Walker Publishing Company, ISBN: 0-14-200161-9, 2002.
[4] F. M. Bengi, dkk., “Perbandingan Arus dan Tegangan Larutan Elektrolit berbagai Jenis Garam” Aceh: Universitas Samudra, vol. 1, no. 2, 2018.
[5] M. A. S. Rezki, dkk., “Pemanfaatan Air Larutan Garam Sebagai Kabel Penghantar Listrik Pengganti Tembaga” Yogyakarta: Universitas Ahmad Dahlan, vol. 1, no.2., 2019.
[6] O. C. N. Ratnasari, Pengukuran Daya Hantar Listrik Larutan CuSo4 Menggunakan Post Office Box, Yogyakarta, Indonesia: Universitas Sanata Darma, 2020.
[7] A. F. Ildah, Percobaan Laboratorium Larutan Kimia, Makasar: Indonesia: SMKN 5 Sidrap, 2017.
[8] S. D. Adha, “Pengaruh Konsentrsi Larutan HNO3 dan Waktu Kontak Terhadap Desorpsi Cadmium (II) Yang Terikat Pada Biomassa Azolla Micropyllasitrat,” Kimia Student Journal, vol. 1 no. 1, pp. 636-642, 2015.
[9] F. Ratu, Nonelektrolit Jenis dan Komposisi. 2021.
[10] R. H. Petrucci, W. S. Harwood, F. G. Herriny, J. D. Madura, Kimia Dasar, diterjemakan oleh S. Achmadi, Jakarta, Indonesia: Erlangga, 1987.
[11] A. Q. Fitriasholikah, Larutan dan Konsentrasi, Banjarmasin, Indonesia: Universitas Lambung Mangkurat, 2019.
[12] M. I. A. Manalu, Perancangan Alat Ukur Konduktivitas Air (Conductivity Meter) Digital Dengan Sensor Resistif, Skripsi, Medan, Indonesia: Universitas Sumatera Utara, 2014.
[13] Irwan, Fadhilah dan Afdal, “Analisis Hubungan Konduktivitas Listrik Dengan Total Dissolved Solid (TDS) Dan Temperature Pada Beberapa Jenis Air,” Jurnal Fisika UNAND, vol. 5, no.1: 2302-8491, 2016.
[14] J. D. Krauss, Electromagnetics, Singapura, Mc Graw-Hill Book Co., 1988.
[15] D. C. Giancoli, Physics: Principle With Applications Index, Jilid 1 Edisi Kelima, penerjemah Y. Hanum, Jakarta, Indonesia: Erlangga, 2001.
[16] Sukardjo, Kimia Fisika, Jakarta, Indonesia, Rineka Cipta, 2013.
[17] P. Soedojo, Azas-azas Ilmu Fisika Listrik Magnet, Yogyakarta, Indonesia: Gadjah Mada University Press, 1985.
Published
2022-12-09
How to Cite
MAHARANI, Sapna; MULIYONO, Suhadi; PUTRI, Erlinda Ratnasari. Kaitan konduktivitas listrik dengan konsentrasi larutan garam dapur. Progressive Physics Journal, [S.l.], v. 3, n. 2, p. 157-163, dec. 2022. ISSN 2722-7707. Available at: <https://jurnal.fmipa.unmul.ac.id/index.php/ppj/article/view/906>. Date accessed: 17 may 2024. doi: https://doi.org/10.30872/ppj.v3i2.906.