Pengaruh Variasi Surfaktan terhadap Struktur, Morfologi, dan Aktivitas Katalitik TiO₂ Mesopori yang Disintesis dengan Metode Kopresipitasi
DOI:
https://doi.org/10.30872/93g18g81Keywords:
DSSC, Coprecipitation, Mesoporous TiO₂, SurfactantAbstract
This study examines the effect of different surfactants: Cetyltrimethylammonium Bromide (CTAB), Didodecyldimethylammonium Bromide (DDAB), and Methyltrioctylammonium Bromide (MTAB) on the synthesis of mesoporous TiO2 using the co-precipitation method. Characterization was performed using Raman Spectroscopy, BET (Brunauer-Emmett-Teller) surface area measurement, Differential Scanning Calorimetry (DSC), and X-ray Diffraction (XRD) techniques. The results indicate that the highest surface area was achieved by CTAB 98.32 m2/g, while MTAB yielded the greatest pore volume 0.2517 cc/g and the largest average pore diameter 10.498 nm. Furthermore, a simple catalytic activity test was performed through the degradation of methylene blue under UV irradiation, which showed that the TiO2–MTAB sample had the highest degradation rate of 0.032 min-1. This indicates a positive correlation between pore size and photocatalytic efficiency.
Downloads
References
[1] Y. Yıldız, K. Bilen, and A. Atılgan, “Experimental investigation of spin coating acceleration effect on the DSSC performance,” Mater Res Express, vol. 11, no. 3, Mar. 2024, doi: 10.1088/2053-1591/ad30ad.
[2] J. Liang et al., “Enhanced photocatalytic performance of Nd3+-doped TiO2 nanosphere under visible light,” Chem Phys, vol. 528, 2020, doi: 10.1016/j.chemphys.2019.110538.
[3] L. Kong, I. Karatchevtseva, T. Wei, and J. Veliscek-Carolan, “Synthesis of Mesoporous Tetragonal ZrO2, TiO2 and Solid Solutions and Effect of Colloidal Silica on Porosity,” Molecules, vol. 29, no. 14, Jul. 2024, doi: 10.3390/molecules29143278.
[4] S. R. Gajjela, K. Ananthanarayanan, C. Yap, M. Grätzel, and P. Balaya, “Synthesis of mesoporous titanium dioxide by soft template based approach: Characterization and application in dye-sensitized solar cells,” Energy Environ Sci, vol. 3, no. 6, pp. 838–845, 2010, doi: 10.1039/b921360k.
[5] S. C. Pillai et al., “Synthesis of high-temperature stable anatase TiO2 photocatalyst,” Journal of Physical Chemistry C, vol. 111, no. 4, pp. 1605–1611, Feb. 2007, doi: 10.1021/jp065933h.
[6] S. Kachbouri, Y. Moussaoui, and E. Elaloui, “The Effect of Surfactant Chain Length and Type on the Photocatalytic Activity of Mesoporous TiO2 Nanoparticles Obtained via Modified Sol-Gel Process.” [Online]. Available: https://www.researchgate.net/publication/324273696
[7] Y. Wang et al., “Hierarchical Porous Activated Carbon Derived from Coconut Shell for Ultrahigh-Performance Supercapacitors,” Molecules, vol. 28, no. 20, Oct. 2023, doi: 10.3390/molecules28207187.
[8] W. Y. Ko, T. C. Wu, S. Y. He, and K. J. Lin, “Phosphorus-doped TiO2 mesoporous nanocrystals for anodes in high-current-rate lithium ion batteries,” Nanotechnology, vol. 35, no. 17, Apr. 2024, doi: 10.1088/1361-6528/ad22aa.
[9] J. Liang et al., “Enhanced photocatalytic performance of Nd3+-doped TiO2 nanosphere under visible light,” Chem Phys, vol. 528, Jan. 2020, doi: 10.1016/j.chemphys.2019.110538.
[10] E. Bayatloo and E. Saievar-Iranizad, “Performance enhancement of TiO2-based dye-sensitized solar cells by carbon nanospheres in photoanode,” Mar. 2015, [Online]. Available: http://arxiv.org/abs/1311.0415
[11] N. Nasikhudin, N. A. Astarini, M. F. Rahman, M. Diantoro, A. Aripriharta, and Z. Osman, “Photovoltaic Performance of TiO2 Mesoporous Films With Different Working Areas for Dye-Sensitized Solar Cells,” J Phys Conf Ser, vol. 2243, no. 1, p. 012118, 2022, doi: 10.1088/1742-6596/2243/1/012118.
[12] A. Fisli et al., “The effect of the number of hydrophobic tails of cationic ammonium surfactants on mesoporous TiO2 synthesized,” Mater Res Express, vol. 10, no. 8, Aug. 2023, doi: 10.1088/2053-1591/acec33.
[13] T. C. Wu, W. M. Huang, T. H. Meen, and J. K. Tsai, “Performance Improvement of Dye-Sensitized Solar Cells with Pressed TiO2 Nanoparticles Layer,” Coatings, vol. 13, no. 5, May 2023, doi: 10.3390/coatings13050907.
[14] B. F. Bukit, E. Frida, S. Humaidi, and P. Sinuhaji, “Preparation and characterization of CTAB surfactant modified TiO2nanoparticles as antibacterial fabric coating material,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Jan. 2022. doi: 10.1088/1742-6596/2165/1/012022.
[15] M. M. Honarmand, M. E. Mehr, M. Yarahmadi, and M. H. Siadati, “Effects of different surfactants on morphology of TiO2 and Zr-doped TiO2 nanoparticles and their applications in MB dye photocatalytic degradation,” SN Appl Sci, vol. 1, no. 5, May 2019, doi: 10.1007/s42452-019-0522-4.
[16] H. Zhou, M. Aftabuzzaman, N. Masud, S. H. Kang, and H. K. Kim, “Key Materials and Fabrication Strategies for High-Performance Dye-Sensitized Solar Cells: Comprehensive Comparison and Perspective,” Feb. 14, 2025, American Chemical Society. doi: 10.1021/acsenergylett.4c03579.
[17] V. A. González-Verjan et al., “Effect of TiO2 particle and pore size on DSSC efficiency,” Mater Renew Sustain Energy, vol. 9, no. 2, Jul. 2020, doi: 10.1007/s40243-020-00173-7.
[18] H. L. Hsu, C. F. Tien, and J. Leu, “Effect of pore size/distribution in TiO2 films on agarose gel electrolyte-based dye-sensitized solar cells,” Journal of Solid State Electrochemistry, vol. 18, no. 6, pp. 1665–1671, 2014, doi: 10.1007/s10008-014-2401-7.
[19] P. Gnida et al., “Impact of TiO2 nanostructures on dye-sensitized solar cells performance,” Materials, vol. 14, no. 7, Apr. 2021, doi: 10.3390/ma14071633.
[20] R. Thahir, “Direct synthesis of mesoporous TiO2 using PVA as surfactant template and assessment of their photocatalytic activity.”
[21] T. Buapuean and S. Jarudilokkul, “Synthesis of mesoporous TiO2 with colloidal gas aphrons, colloidal liquid aphrons, and colloidal emulsion aphrons for dye-sensitized solar cells,” Mater Today Chem, vol. 16, Jun. 2020, doi: 10.1016/j.mtchem.2019.100235.
[22] Q. Y. Lin et al., “Modulation of Hierarchical Pores in Metal-Organic Frameworks for Improved Dye Adsorption and Electrocatalytic Performance,” Inorg Chem, vol. 61, no. 15, pp. 5800–5812, Apr. 2022, doi: 10.1021/acs.inorgchem.1c03937.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Progressive Physics Journal

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

