Aplikasi Sistem Informasi Geografis (SIG) Untuk Pemetaan Tingkat Kerawanan Longsor Di Kota Bandar Lampung
DOI:
https://doi.org/10.30872/wz2c4f62Keywords:
Geographic Information System (GIS), Remote Sensing, Landslide Vulnerability, Disaster MitigationAbstract
The research entitled "Geographic Information System (GIS) Application for Landslide Prone Level Mapping in Bandar Lampung City" is motivated by data obtained from BPBD in 2018, there are at least 15 sub-districts in Bandar Lampung which are indicated as landslide-prone areas because they have hills and valleys that are quite dangerous. For this reason, it is necessary to create a landslide prone zone map to produce information about the position related to the level of landslide vulnerability in the city of Semarang. This map can be used as a reference material in decision making to prevent landslides in vulnerable areas, thus reducing the number of casualties and material as well as planning in the development of facilities and infrastructure. This research uses remote sensing image data and GIS (Geographic Information System) by weighting the parameters that affect landslide occurrence, namely: slope, land cover, soil type, and rainfall. The result of this research is a landslide vulnerability map divided into 4 vulnerability classes, namely: low, medium, high, and very high. And the information obtained from the 4 factors, the potential for landslides in Bandar Lampung City is divided into 4 characteristics of landslide prone zones, namely low level zones in 7 sub-districts, medium level in 9 sub-districts, high level in 5 sub-districts, and very high level in 7 sub-districts.
Downloads
References
[1] S. Aronoff, Geographic Information Systems: A Management Perspective. Ottawa, Canada, 1989.
[2] Badan Nasional Penanggulangan Bencana, Indeks Rawan Bencana Indonesia, BNPB, 2011.
[3] B. B. Setiadi and R. Rustadi, "Analisis penurunan muka tanah dengan small baseline subset differential SAR interferograms di Kota Bandar Lampung," Jurnal Geofisika Eksplorasi, vol. 5, no. 2, pp. 30-43, 2019.
[4] M. J. U. H. Bahrudin, "Zonasi Daerah Rawan Longsor Menggunakan Analisis Sistem Informasi Geografis Berdasarkan Metode AHP Pada Daerah Gunung Kidul Yogyakarta," Indonesian Journal of Business Intelligence (IJUBI), vol. 1, no. 1, pp. 1-8, 2019.
[5] I. Buchori and J. Susilo, "Model keruangan untuk identifikasi kawasan rawan longsor," Tataloka, vol. 14, no. 4, pp. 282-294, 2016.
[6] P. A. Burrough, Principles of Geographical Information Systems for Land Resources Assessment. New York: Oxford University Press, 1988.
[7] M. N. Demers, Fundamental of Geographic Information Systems. New York: John Wiley & Sons, Inc., 1997.
[8] V. Frasetya, A. Corry, N. Trenggono, and P. Putra, "Komunikasi Mitigasi Bencana Kota Bandar Lampung," KOMUNIKA, vol. 4, no. 1, pp. 1-18, 2021.
[9] D. Martin, Geographic Information Systems: Socioeconomic Applications. London and New York: Routledge, 1996.
[10] R. Mulyasari, S. Suharno, N. Haerudin, H. Hesti, I. B. S. Yogi, and S. P. Saputro, "Aplikasi Metode Geolistrik dan Analisis X-Ray Diffraction (XRD) untuk Investigasi Longsor di Pidada, Kecamatan Panjang, Bandar Lampung," Eksplorium, vol. 42, no. 2, pp. 131-140, 2021.
[11] A. L. Nugraha, Penyusunan dan Penyajian Peta Online Risiko Banjir Rob Kota Semarang (Doctoral dissertation, Universitas Gadjah Mada), 2013.
[12] Pemerintah Kota Bandar Lampung, "Sekilas Kota," 2017. [Online]. Available: https://bandarlampungkota.go.id/sekilas-kota/. [Accessed: Jan. 12, 2025].
[13] Puslittanak Pusat Penelitian dan Pengembangan Tanah dan Agroklimat, Laporan Akhir Pengkajian Potensi Bencana Kekeringan, Banjir dan Longsor di Kawasan Satuan Wilayah Sungai Citarum-Ciliwung, Jawa Barat Bagian Barat Berbasis Sistem Informasi Geografi. Bogor, 2004.
[14] B. Sulistyo, "Peranan sistem informasi geografis dalam mitigasi bencana tanah longsor," in Seminar Nasional Mitigasi Bencana Dalam Perencanaan Pengembangan Wilayah, Maret Bengkulu, 2016.
[15] N. F. Yasien, F. Yustika, I. Permatasari, and M. Sari, "Aplikasi Geospasial Untuk Analisis Potensi Bahaya Longsor Menggunakan Metode Weighted Overlay (Studi Kasus Kabupaten Kudus, Jawa Tengah)," Jurnal Geosains Dan Remote Sensing, vol. 2, no. 1, pp. 33-40, 2021.
[16] M. F. Yassar et al., "Penerapan Weighted Overlay Pada Pemetaan Tingkat Probabilitas Zona Rawan Longsor di Kabupaten Sumedang, Jawa Barat," Jurnal Geosains Dan Remote Sensing, vol. 1, no. 1, pp. 1-10, 2020.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Progressive Physics Journal

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

