Penentuan Kedalaman dan Sudut Kemiringan Sesar Grindulu di Pacitan Menggunakan Metode Crow Search Algorithm (CSA) pada Data Self-Potential (SP)

  • Arif Haryono Jurusan Fisika FMIPA Universitas Mulawarman
  • Reni Agustin

Abstract

Self-Potential (SP) is a geophysical survey method that is relatively easy and inexpensive. Interpretation of SP data can be used for various purposes such as the detection of landslide-prone areas, exploration of various types of minerals, and identification of the parameters of a fault or crack. In this study, SP data acquisition was carried out in Tambakrejo Village, Pacitan District with a total of 102 measurement data which aims to determine the depth and dip of the Grindulu Fault. SP data acquired in the field needs to be corrected for reference, namely corrections caused by a displacement of the starting point of measurement. This data is then filtered to increase the signal-to-noise ratio (SNR) and sharpen the resulting anomalies. This filtering process is carried out using the ICEEMD (Improved Complete Ensemble Empirical Mode Decomposition) method which is a development of the EMD method. Furthermore, the SP data inversion process to obtain model parameters is carried out by utilizing the CSA (Crow Search Algorithm) method. Based on the anomaly model generated from the SP data inversion process, it can be concluded that the Grindulu Fault was identified at a distance of 803,8 meters from the starting point of measurement with depths ranging from 11,06 to 102,74 meters. Furthermore, based on distance, depth, and anomaly shape data, the dip value can be calculated. The calculation results show that the dip of the Grindulu Fault in the study area is 75.58o. Identification of the Grindulu Fault in the form of depth and dip is very important in efforts to model the fault comprehensively.

Downloads

Download data is not yet available.

References

[1] M. Irsyam et al., Peta sumber dan bahaya gempa Indonesia tahun 2017, 1st ed. Bandung: Pusat Penelitian dan Pengembangan Perumahan dan Permukiman, Kementerian PUPR, 2017.

[2] H. Samodra, S. Gafoer, and S. Tjokrosapoetro, “Peta Geologi Lembar Pacitan, Jawa.” Pusat Penelitian dan Pengembangan Geologi, Bandung, 1992.

[3] B. T. Laksono, “Hasil Sensus Penduduk Kabupaten Pacitan Tahun 2020,” Pacitan, Jan. 2021.

[4] A. Haryono, “Analisis Pola Tegasan untuk Menentukan Tipe Sesar Grindulu di Pacitan, Jawa Timur,” Jurnal Geosains Kutai Basin, vol. 5, no. 2, pp. 73–79, 2022.

[5] A. Haryono, Sungkono, M. A. Caesardi, B. J. Santosa, F. Syaifuddin, and A. Widodo, “Estimation of Shear Wave Velocity Using Horizontal to Vertical Spectrum Ratio (HVSR) Inversion to Identify Faults in Pacitan,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, Jun. 2020. doi: 10.1088/1755-1315/506/1/012051.

[6] N. E. Huang et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” The Royal Society, vol. 454, pp. 903–995, 1998.

[7] M. A. Colominas, G. Schlotthauer, and M. E. Torres, “Improved complete ensemble EMD: A suitable tool for biomedical signal processing,” Biomed Signal Process Control, vol. 14, no. 1, pp. 19–29, 2014, doi: 10.1016/j.bspc.2014.06.009.

[8] M. E. Torres, M. A. Colominas, G. Schlotthauer, and P. Flandrin, “A complete ensemble empirical mode decomposition with adaptive noise,” in International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague: IEEE, Jul. 2011. doi: https://doi.org/10.1109/ICASSP.2011.5947265.

[9] M. Wang, Z. Zhou, Z. Li, and Y. Zeng, “An Adaptive Denoising Algorithm for Chaotic Signals Based on Improved Empirical Mode Decomposition,” Circuits Syst Signal Process, vol. 38, no. 6, pp. 2471–2488, Jun. 2019, doi: 10.1007/s00034-018-0973-7.

[10] Z. Wu and N. E. Huang, “Ensemble Empirical Mode Decomposition: A Noise Assisted Data Analysis Method,” 2005.

[11] Y. Wang, Z. Fan, H. Liu, and X. Gao, “Planetary gearbox fault diagnosis based on ICEEMD-time-frequency information entropy and VPMCD,” Applied Sciences (Switzerland), vol. 10, no. 18, Sep. 2020, doi: 10.3390/APP10186376.

[12] P. Díaz et al., “An improved crow search algorithm applied to energy problems,” Energies (Basel), vol. 11, pp. 1–22, Feb. 2018, doi: 10.3390/en11030571.

[13] A. Askarzadeh, “A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm,” Comput Struct, vol. 169, pp. 1–12, Jun. 2016, doi: 10.1016/j.compstruc.2016.03.001.

[14] A. Biswas and S. P. Sharma, “Optimization of self-potential interpretation of 2-D inclined sheet-type structures based on very fast simulated annealing and analysis of ambiguity,” J Appl Geophy, vol. 105, pp. 235–247, 2014, doi: 10.1016/j.jappgeo.2014.03.023.

[15] A. Biswas and S. P. Sharma, “Resolution of multiple sheet-type structures in self-potential measurement,” Journal of Earth System, vol. 123, no. 4, pp. 809–825, 2014.

[16] A. Haryono, Sungkono, R. Agustin, B. J. Santosa, A. Widodo, and B. Ramadhany, “Model parameter estimation and its uncertainty for 2-D inclined sheet structure in self-potential data using crow search algorithm,” Acta Geodaetica et Geophysica, vol. 55, no. 4, pp. 691–715, Dec. 2020, doi: 10.1007/s40328-020-00321-5.

[17] X. Li and M. Yin, “Application of Differential Evolution Algorithm on Self-Potential Data,” PLoS One, vol. 7, no. 12, Dec. 2012, doi: 10.1371/journal.pone.0051199.

[18] S. A. Mehanee, “An efficient regularized inversion approach for self-potential data interpretation of ore exploration using a mix of logarithmic and non-logarithmic model parameters,” Ore Geol Rev, vol. 57, pp. 87–115, Mar. 2014, doi: 10.1016/j.oregeorev.2013.09.002.

[19] L. Cholifah, N. Mufidah, E. Lazuardi, B. J. Santosa, S. Sungkono, and A. Haryono, “Identification of the Grindulu Fault in Pacitan, East Java using Magnetic Method,” Jurnal Penelitian Fisika dan Aplikasinya (JPFA), vol. 10, no. 1, pp. 22–33, Jul. 2020, doi: 10.26740/jpfa.v10n1.p22-33.
Published
2023-06-23
How to Cite
HARYONO, Arif; AGUSTIN, Reni. Penentuan Kedalaman dan Sudut Kemiringan Sesar Grindulu di Pacitan Menggunakan Metode Crow Search Algorithm (CSA) pada Data Self-Potential (SP). Progressive Physics Journal, [S.l.], v. 4, n. 1, p. 259-269, june 2023. ISSN 2722-7707. Available at: <https://jurnal.fmipa.unmul.ac.id/index.php/ppj/article/view/1141>. Date accessed: 17 june 2024. doi: https://doi.org/10.30872/ppj.v4i1.1141.