Karakteristik Maseral dan Peringkat Batubara Daerah Balikpapan Selatan Berdasarkan Analisis Petrografi Organik
Abstract
This study aims to characterize the maceral composition and determine the rank of coal from the Kampungbaru Formation in the South Balikpapan area based on organic petrography analysis. Coal samples were analyzed using reflectance microscopy to identify and quantify maceral components and measure vitrinite reflectance. The analysis results indicate that the huminite maceral group dominates the coal composition (60.7-84.6%), followed by liptinite (9.8-27.5%), and low inertinite (5.6-11.8%). Vitrinite reflectance ranges from 0.30-0.33%, indicating that the coal is in the lignite to sub-bituminous rank. This low coal rank reflects rapid deposition conditions and an anoxic to suboxic environment that inhibits the complete decomposition of organic matter.
References
[2] Moore, T.A. dan Shearer, J.C. (2003). Peat/coal type and depositional environment-are they related?. International Journal of Coal Geology, 56:233-252.
[3] Scott, A.C. (2002). Coal petrology and the origin of coal macerals: a way ahead?. International Journal of Coal Geology, 50:119-134
[4] Yuniardi, Y. (2012). Petroleum System Cekungan Kutai Bagian Bawah, Daerah Balikpapan dan Sekitarnya, Propinsi Kalimantan Timur. Bulletin of Scientific Contribution, 10 (1).
[5] Satyana, A. H. (1999). Tectonic Controls on The Hydrocarbon Habitats of The Barito, Kutei, and Tarakan Basins, Eastern Kalimantan, Indonesia: Major Dissimilarities in Adjoining Basins, Journal of Asian Earth Sciences, 17.
[6] Jamaluddin, Schöpfer, K., Wagreich, M., Maria, Gier, S., Fathy, D. (2024). Effect of Depositional Environment and Climate on Organic Matter Enrichment in Sediments of the Upper Miocene—Pliocene Kampungbaru Formation, Lower Kutai Basin, Indonesia. Geosciences, 14, 164.
[7] Jamaluddin, Rahmawati, D., Maria. (2024). Analisis Lingkungan Pengendapan dan Karakteristik Material Organik Daerah Air Putih, Kota Samarinda, Indonesia. Jurnal Geosains dan Teknologi. vol 6(3). Hal 203-214.
[8] Luthfi, M., Sunarwan, B. (2009). Tinjauan Geologi Terhadap Potensi dan Tingkat Kerawanan Bahaya Longsor Di Kota Balikpapan-Kalimantan Timur. Jurnal Teknologi, II (14): 9-28.
[9] ISO, 2009a. 7404-2(E). Methods for the petrographic analysis of coals - Part 2: Methods of preparing coal samples.
[10] ISO, 2009b. 7404-3. Methods for the petrographic analysis of coals - Part 3: Method of determining maceral group composition
[11] ICCP (International Committee for Coal Petrology). (1998). The new vitrinite classification (ICCP System 1994). Fuel 77, 349–358.
[12] ICCP (International Committee for Coal Petrology). (2001). The new inertinite classification (ICCP System 1994). Fuel 80, 459–471.
[13] Taylor, G., Teichmüller, M., Davies, A., Diessel, D., Littke, R., Robert, P., 1998. Organic Petrology. Gebrüder Borntraeger, Berlin.
[14] Hackley, P. C. dan Warwick, P. D. (2005). Organic Petrography of Coals from a Coalbed Methane Test Well, Ouachita Parish, Louisiana. Virginia: USGS.
[15] Pickel, W., Kus, J., Flores, D., Kalaitzidis, S., Christanis, K., Cardott, B.J., Misz-Kennan, M., Rodrigues, S., Hentschel, A., Hamor-Vido, M., Crosdale, P., Wagner, N. (2017). Classification of liptinite - ICCP System 1994. International Journal of Coal Geology, 169, 40–61.
[16] ISO, 2009c. 7404-5. Methods for the petrographic analysis of coals - Part 5: Method of determining microscopically the reflectance of vitrinite.
[17] Diessel, C.F.K. (2010). The stratigraphic distribution of inertinite. International Journal of Coal Geology, 81, 251-268.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.