Prediksi Curah Hujan di Kabupaten Berau Menggunakan Support Vector Regression

Authors

DOI:

https://doi.org/10.30872/2098zg59

Keywords:

Rainfall, Machine Learning, Prediction, SVR

Abstract

Machine learning is an analytical approach that is able to predict the output of a system based on patterns that have been formed from previous data. One of the machine learning methods used in this research is Support Vector Regression (SVR). SVR is the application of the support vector machine method in the case of regression. The concept of the SVR algorithm is to obtain a function with the minimum error rate so as to produce a good predictive value. The advantage of SVR lies in its ability to handle nonlinear data using the kernel functions. This study aims to determine the results of rainfall prediction in Berau Regency using the SVR method. The data used is rainfall data in Berau Regency from January 2014 to December 2023 as much as 120 data, and uses five predictor variables namely temperature, humidity, air pressure, wind speed, and solar irradiation. The kernel function used is a polynomial kernel with parameter values  and . The results showed that the best SVR model to predict rainfall in Berau Regency is the SVR model with parameter values  and . This model provides good prediction performance, with an RMSE value of 0,1786.

Downloads

Download data is not yet available.

References

Abdullah, M., & Said, S. (2025). Performance evaluation of machine learning regression models for rainfall prediction. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 49(4), 4231–4250.

Artini, N. P. S. Y., Sumarjaya, I. W., & Nilakusmawati, D. P. E. (2024). Penerapan Metode Support Vector Regression (SVR) Dengan Algoritma Grid Search Dalam Peramalan Harga Saham.

Badan Penanggulangan Bencana Daerah Kabupaten Berau. (2021). Dokumen Peta Risiko Bencana Kabupaten Berau Provinsi Kalimantan Timur Tahun 2020 - 2024.

Badan Pusat Statistik. (2023). Provinsi Kalimantan Timur Dalam Angka 2023. Samarinda: Badan Pusat Statistik Provinsi Kalimantan Timur.

Hermawan, A., Mangku, I. W., Ardana, N. K. K., & Sumarno, H. (2022). Analisis support vector regression dengan algoritma grid search untuk memprediksi harga saham. MILANG Journal of Mathematics and Its Applications, 18(1), 41–60.

Ishlah, A. W., Sudarno, S., & Kartikasari, P. (2023). Implementasi gridSearchCV pada support vector regression (SVR) untuk peramalan harga saham. Jurnal Gaussian, 12(2), 276–286.

Isnaeni, R., Sudarmin, S., & Rais, Z. (2022). Analisis Support Vector Regression (Svr) Dengan Kernel Radial Basis Function (Rbf) Untuk Memprediksi Laju Inflasi Di Indonesia. VARIANSI: Journal of Statistics and Its Application on Teaching and Research, 4(1), 30–38.

Karondia, L. A., Fitrian, R., & Hizkia, H. (2022). Pemetaan Zonasi Kerawanan Banjir berbasis Sistem Informasi Geografis (Studi Kasus: Kabupaten Berau, Kalimantan Timur). Geoid, 18(1), 57–68.

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C. C., & Lin, C. C. (2024). Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien [R package e1071 version 1.7-16]. CRAN Contrib. Packag.

Ngu, J. C. Y., Yeo, W. S., Thien, T. F., & Nandong, J. (2024). A comprehensive overview of the applications of kernel functions and data-driven models in regression and classification tasks in the context of software sensors. Applied Soft Computing, 164, 111975.

Nurhalizah, R. S., Ardianto, R., & Purwono, P. (2024). Analisis Supervised dan Unsupervised Learning pada Machine Learning: Systematic Literature Review. Jurnal Ilmu Komputer Dan Informatika, 4(1), 61–72.

Purwoko, C. F. F., Sediono, S., Saifudin, T., & Mardianto, M. F. F. (2023). Prediksi Harga Ekspor Non Migas di Indonesia Berdasarkan Metode Estimator Deret Fourier dan Support Vector Regression. Inferensi, 6(1), 45–55.

Rodríguez-Pérez, R., & Bajorath, J. (2022). Evolution of support vector machine and regression modeling in chemoinformatics and drug discovery. Journal of Computer-Aided Molecular Design, 36(5), 355–362.

Safira, A. N., Warsito, B., & Rusgiyono, A. (2023). Analisis support vector regression (SVR) dengan algoritma grid search time series cross validation untuk prediksi jumlah kasus terkonfirmasi COVID-19 di Indonesia. Jurnal Gaussian, 11(4), 512–521.

Siregar, N. A. (2022). Peramalan curah hujan di Kota Medan menggunakan metode support vector regression. Journal of Informatics and Data Science (J-IDS), 1(1), 1–3.

Sunarmi, N., Kumailia, E. N., Nurfaiza, N., Nikmah, A. K., Aisyah, H. N., Sriwahyuni, I., & Lailly, S. N. (2022). Analisis faktor unsur cuaca terhadap perubahan iklim di Kabupaten Pasuruan pada tahun 2021 dengan metode Principal Component Analysis. Newton-Maxwell Journal of Physics, 3(2), 56–64.

Suyono, A. A., Kusrini, K., & Arief, M. R. (2022). Prediksi Indeks Harga Konsumen Komoditas Makanan di Kota Surabaya menggunakan Support Vector Regression. METIK JURNAL (AKREDITASI SINTA 3), 6(1), 45–51.

Published

2025-12-11