Analisis Potensi Pencemaran Air Sungai Di Lingkungan Hutan Tropis Lembap Kalimantan Timur Menggunakan Model Regresi Weibull
Abstract
Weibull Regression Model (WR) is the Weibull distribution in which scale parameter is stated in the regression parameter. WR model derived from the interrelated functions of Weibull Distribution, consisting of Weibull survival regression model, Weibull cumulative distribution regression model, Weibull hazard regression model, and Weibull mean regression. The purpose of this study was to obtain the pollution potential information of river water in east Kalimantan and to obtain the factors that influence it through RW modeling on dissolved oxygen (DO) data in 2022. Research data is secondary data provided by life inveronment of East Kalimantan Province. The parameter estimation method is maximum likelihood estimation (MLE). The study concluded the pollution potential information of river water in east Kalimantan Timur based on modeling RW DO data consists of the chance the unpolluted river water is 0.6868, chance of polluted river water is 0.3132, the water pollution rate is 0.4349 locations/ ppm, and average river water DO is 5.6003 ppm. Factors that influence the pollution potential of river water is nitrite concentration, water temperature, and degree of water color.
Downloads
References
Fajriati, N. A., Suyitno, & Wasono. (2022). Model Regresi Hazard Rate Weibull Kesembuhan Pasien Rawat Inap Demam Berdarah Dengue (DBD) Di RSUD Panglima Sebaya Tanah. Jurnal Eksponensial, 13(1), 35–43.
Fardiaz, S. (1992). Polusi Air dan Udara. Anggota IKAPI.
Francis, B., & Lawless, J. F. (1983). Statistical Models and Methods for Lifetime Data. Biometrics, 39(3), 820. https://doi.org/10.2307/2531129
Inayah, U. R., Suyitno, & Siringoringo, M. (2021). Upaya Pencegahan Pencemaran Air Sungai Mahakam Melalui Pemodelan Geographically Weighted Logistic Regression pada Data BOD. Jurnal Eksponensia, 12(1), 17–26.
Khairunnisa, S. F., Suyitno, S., & Mahmuda, S. (2023). Weibull Regression Model On Hospitalization Time Data Of COVID-19 Patients At Abdul Wahab Sjahranie Hospital Samarinda. Jurnal Matematika, Statistika dan Komputasi, 19(2), 286–303.
Suryadiningrat, & Sihombing, R. P. (2022). Komparasi Pemodelan Logit, Probit dan Clog-Log Pada Regresi Beta (Studi Kasus: Pengaruh IPG dan IDG Terhadap IKG di Indonesia Tahun 2020). Nusantara Journal of Behavioral and Social Science, 1(4), 101–104. https://doi.org/10.47679/njbss.202215
Susetyo, B. (2010). Penaksiran Parameter dan Pengujian Hipotesis Model Regresi Weibull Univariat. PT. Refika Aditama.
Suyitno. (2017). Penaksiran Parameter dan Pengujian Hipotesis Model Regresi Weibull Univariat. Jurnal Eksponensial, 8(2), 179–183.
Suyitno, Nohe, D. A., Purnamasari, I., Siringoringo, M., Goejantoro, R., & Rahmah, M. N. (2022). Pemodelan Regresi Weibull pada Potensi Pencemaran Sungai Mahakam. Anggota IKAPI, Jawa Barat.