Mengatasi Multikoliniearitas Dalam Regresi Linier Berganda Menggunakan Principal Component Analysis

  • Niken Harel Chairunnisa Universitas Mulawarman
  • Darnah Darnah Universitas Mulawarman
  • Syaripuddin Syaripuddin Universitas Mulawarman

Abstract

Multiple linear regression analysis has assumptions that must be met, one of which is multicollinearity. Multicollinearity occurs when the independent variables correlate with each other, resulting in the regression coefficient produced by multiple linear regression analysis being very weak or unable to provide analysis results that represent the nature or influence of the independent variable concerned. The detection of multicollinearity can be known through the VIF value. In this study, human development index data on Kalimantan Island in 2019 detected multicollinearity because some independent variables have a VIF value of more than 10 so that the method used to overcome multicollinearity in this study is Principal Component Analysis (PCA). Based on the results of research using the Principal Component Regression method, There are five independent variables that influence the IPM that is Percentage of Poor Population, Number of Health Workers, Number of Workforce, Number of High Schools, and Number of High School Teachers.


 

Downloads

Download data is not yet available.

References

Alfigari. (2000). Analisis Regresi Edisi Ke Dua. Yogyakarta: BPFE.
Azahari, A. (2000). Pembangunan Sumber Daya Manusia dan Indeks Pembangunan Manusia Sektor Pertanian. Jurnal Ekonomi dan Bisnis Indonesia, 15(1), 56-69
Draper, Norman dan Smith, Harry. (1992). Analisis Regresi Terapan Edisi Kedua. Jakarta: PT Gramedia Pustaka Utama.
Gujarati, Damodar dan Dawn C, Porter. (2015). Basics Ekonometrics, Mc Graw Hill, Inc. New York.
Montgomery, D.C. & E.A. Peck. (1991). Introduction to Linear Regression Analysis, Second Edition. New York: John Wiley and Sons, Inc.
Soemartini. (2008). Principal Component Analysis (PCA) Sebagai Salah Satu Metode Untuk Mengatasi Masalah Multikolinieritas. Jurusan Statistika, F.MIPA, Universitas Padjadjaran.
Sriningsih, M., Hatidja, D., & Prang, J. D. (2018). Penanganan Multikolinearitas Dengan Menggunakan Analisis Regresi Komponen Utama Pada Kasus Impor Beras Di Provinsi Sulut. Jurnal Ilmiah Sains, 18(1), 18–24.
Sungkono, J. & Nugrahaningsih, T.K. (2017). Simulasi Dampak Multikolinearitas Pada Kondisi Penyimpangan Asumsi Normalitas. Jurnal Magistra. 1 (101), 45-50.
Published
2025-04-17
How to Cite
CHAIRUNNISA, Niken Harel; DARNAH, Darnah; SYARIPUDDIN, Syaripuddin. Mengatasi Multikoliniearitas Dalam Regresi Linier Berganda Menggunakan Principal Component Analysis. EKSPONENSIAL, [S.l.], v. 16, n. 1, p. 1-9, apr. 2025. ISSN 2798-3455. Available at: <https://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/1155>. Date accessed: 19 apr. 2025. doi: https://doi.org/10.30872/eksponensial.v16i1.1155.