Peramalan Inflasi Kota Balikpapan Menggunakan Metode Singular Spectrum Analysis

  • Andrean Sergio Universitas Mulawarman
  • Sri Wahyuningsih Program Studi Statistika, Jurusan Matematika, FMIPA Universitas Mulawarman
  • Meiliyani Siringoringo 2Program Studi Statistika, Jurusan Matematika, FMIPA Universitas Mulawarman

Abstract

Singular Spectrum Analysis (SSA) is a nonparametric forecasting method capable of separating time series data into interpretable trend, seasonal, cycle, and noise. Methods with component separation are suitable for characterizing economic and business data trends that tend to contain stationary, trend, cycle, and seasonal factors. One of the economic data that can be used in research is inflation. The purpose of this study is to obtain the results of inflation forecast in Balikpapan City from November 2022 to October 2023. Based on the forecasting results of the SSA method on inflation in Balikpapan City, the MAAPE value was 23.53% which showed that the forecasting results were quite accurate. Based on the results of inflation forecast from November 2022 to October 2023, there was a decrease in inflation in November 2022 by -0.64% or it could be said that there would be deflation by 0.64%. Over the next period, inflation tends to increase where the highest inflation will occur in June 2023, which is 1.96%.

Downloads

Download data is not yet available.

References

Abdillah, R. F. (2021). Indeks Harga Konsumen dan Inflasi Provinsi Kalimantan Timur 2021. Samarinda: BPS Kaltim.
Adhiguna, K., & Pujiyanta, A. (2014). Aplikasi Bantu untuk Menentukan Nilai Eigen dan Vektor Eigen Berbasis Multimedia. Jurnal Sarjana Teknik Informatika, 2(1).
Asrof, A., Ischak, R., & Darmawan, G. (2017). Peramalan Produksi Cabai Merah di Jawa Barat Menggunakan Metode Singular Spectrum Analysis. Jurnal Statistika, 17(2).
Boediono. (2016). Ekonomi Internasional. Yogyakarta: BPFE.
Darmawan, G., Handoko, B., & Zulhanif. (2017). Identifikasi Perubahan Pola Curah Hujan Melalui Periodogram Standar. JMP, 9(1).
Darmawan, G., Khaeri, H., & Yulian, E. (2018). Penerapan Metode Singular Spectrum Analysis (SSA) Pada Peramalan Jumlah Penumpang Kereta Api di Indonesia Tahun 2017. Jurnal Euclid, 5(1).
Dewi, P. N., & Listiowarni, I. (2020). Implementasi Holt-Winters Exponential Smoothing untuk Peramalan Harga Bahan Pangan di Kabupaten Pamekasan. Digital Zone: Jurnal Teknologi Informasi dan Komunikasi, 11(2).
Golyandina, N., & Zhigljavsky, A. (2013). Singular Spectrum Analysis for Time Series. New York: Springer.
Hasibuan, R. R., & Aisa, S. (2020). Dampak dan Resiko Pemindahan Ibu Kota Terhadap Ekonomi di Indonesia. AT-TAWASSUTH: Jurnal Ekonomi Islam, 5(1).
Hassani, H., & Mahmoudvand, R. (2018). Singular Spectrum Analysis With R. Iran: Palgrave Advanced Texts in Econometrics.
Hidayat, K. W., Wahyuningsih, S., & Nasution, Y. N. (2020). Pemodelan Jumlah Titik Panas di Provinsi Kalimantan Timur dengan Metode Singular Spectrum Analysis. JAMBURA, 1(2).
Husnita, F., Wahyuningsih, S., & Nohe, D. A. (2015). Analisis Spektral dan Model ARIMA untuk Peramalan Jumlah Wisatawan di Dunia Fantasi Taman Impian Jaya Ancol. Jurnal Eksponensial, 6(1).
Irwan, Sauddin, A., & Kaimuddin, A. (2022). Peramalan Produksi Padi Kabupaten Pinrang dengan Metode Singular Spectrum Analysis. Jurnal Matematika dan Statistika serta Aplikasinya, 10(1).
Ischak, R., Asrof, A., & Darmawan, G. (2018). Peramalan Rata-Rata Harga Beras di Tingkat Penggilingan Menggunakan Model Singular Spectrum Analysis (SSA). Prosiding Seminar Nasional Matematika dan Pendidikan Matematika, Yogyakarta, 4(1).
Jatmiko, Y.A., Rahayu, R.L., & Darmawan, G. (2017). Perbandingan Keakuratan Hasil Peramalan Produksi Bawang Merah Metode Holt-Winters dengan Singular Spectrum Analysis (SSA). Jurnal Matematika (MANTIK), 3(1).
Juliana, A., Hamidatun, & Muslima, R. (2019). Modern Forecasting, Teori dan Aplikasi. Tarakan: DEEPUBLISH.
Kim, S., & Kim, H. (2016). A New Metric of Absolute Percentage Error for Intermittent Demand Forecasts. International Journal of Forecasting, 32(3).
Putong, I. (2013). Economics Pengantar Mikro dan Makro. Jakarta: Mitra Wacana Media.
Ruhiat, D., Andiani, D., & Kamilah, W. N. (2020). Forecasting Data Runtun Waktu Musiman Menggunakan Metode Singular Spectrum Analysis (SSA). Teorema, 5(1).
Sakinah, A. M. (2018). Akurasi Peramalan Long Horizon dengan Singular Spectrum Analysis. Journal of Sunan Gunung Jati State Islamic University (UIN), 3(2).
Seftiansyah, E. S., Yuniarti, D., & Syaripuddin. (2013). Peramalan Kas Bank Central Asia, Tbk Samarinda Tahun 2012 Dengan Menggunakan Metode Dekomposisi dan Double Moving Averages. Jurnal Eksponensial, 4(2).
Sukiyono, K., & Rosdiana. (2018). Pendugaan Model Peramalan Harga Beras Pada Tingkat Grosir. AGRISEP, 17(1).
Wicaksono, A., Yundari, & Helmi. (2019). Prediksi Outflow Uang Kartal di Kalimantan Barat dengan Metode Singular Spectrum Analysis (SSA). Bimaster, 8(3).
Published
2023-06-27
How to Cite
SERGIO, Andrean; WAHYUNINGSIH, Sri; SIRINGORINGO, Meiliyani. Peramalan Inflasi Kota Balikpapan Menggunakan Metode Singular Spectrum Analysis. EKSPONENSIAL, [S.l.], v. 14, n. 1, p. 21-30, june 2023. ISSN 2798-3455. Available at: <https://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/1098>. Date accessed: 13 apr. 2024. doi: https://doi.org/10.30872/eksponensial.v14i1.1098.
Section
Articles