Pengelompokan Kabupaten/Kota Di Pulau Kalimantan Dengan Fuzzy C-Means Berdasarkan Indikator Kemiskinan

  • Retno Ayu Ningtyas 3Laboratorium Matematika Komputasi, Program Studi Matematika, FMIPA, Universitas Mulawarman
  • Yuki Novia Nasution 3Laboratorium Matematika Komputasi, Program Studi Matematika, FMIPA, Universitas Mulawarman
  • Syaripuddin Syaripuddin 3Laboratorium Matematika Komputasi, Program Studi Matematika, FMIPA, Universitas Mulawarman

Abstract

Cluster analysis is a branch of statistical science that is used to grouping data that have similar characteristics between each other. The grouping method used in this research is Fuzzy C-Means. Fuzzy C-Means method is one of the grouping methods developed from the C-Means method by applying the properties of fuzzy sets. With the existence of each data is determined by the degree of membership. This method is applied to data from 56 districts/cities on Borneo based on poverty indicators with variables namely the percentage of average length of schooling, life expectancy, percentage of the poor, percentage of open unemployment rate, percentage of households with proper sanitation, and percentage of households with proper drinking water. This study aims to obtain the results of grouping districts/cities on Borneo based on poverty indicators and to obtain optimal cluster results based on three validity indices, namely Connectivity, Dunn, and Silhoutte values. Based on the results of the study, it was found that there were 2 optimal clusters, namely the first cluster consisted of 36 regencies/cities while the second cluster consisted of 20 regencies/cities.

Downloads

Download data is not yet available.

References

Bezdek, J.C dan Dunn, J. (1975). Optimal Fuzzy Partitions: A Heuristic for Estimating the Parameters in a Mixture of Normal Distributions. IEEE Transactions on Computers, 835-838.
Girsang, Wardis. (2011). Kemiskinan Multidimensional Di Pulau-Pulau Kecil. Ambon: BPFP-UNPATTI.
Halkidi, Maria., Batistakis, Yannis, Batistakis., dan Michalis, Vazirgiannis. (2001). On Clustering Validation Techniques. Journal of Intelligent Information Systems 17, 107-145.
Haryadi, Agus. (2005). Kemiskinan, Mentalitas Budaya. Yogyakarta: Pustaka Rahima.
Kapita, S.N., & Abdullah, S. Do. (2020). Pengelompokan Data Mutu Sekolah Menggunakan Metode Self-Organizing Map (SOM) dan K-Means. Jurnal Teknik ITS, A368-A373.
Khairati, A.F., Adlina, A., Hertono, G., & Handari, B. (2019). Kajian Indeks Validitas pada Algoritma K-Means Enhanced dan K-Means MMCA. In: Prosiding Seminar Nasional Matematika
Klawonn, F, dkk. (2007). Evolving Fuzzy Rule-Based Classifiers. IEEE Press 220-225
Kusrini dan Luthfi, E. T. (2009). Algoritma Data Mining. Yogyakarta: Andi Offset
Kusumadewi, Sri. (2002). Analisis dan Desain Sistem Fuzzy Menggunakan Tool Box. Yogyakarta: Graha Ilmu.
Kusumadewi, S, dkk. (2006). Fuzzy Multi-Attribute Decision Making (Fuzzy MADM). Yogyakarta: Graha Ilmu.
Kusumadewi, Sri. (2007). Klasifikasi Kandungan Nutrisi Bahan Pangan Menggunakan Fuzzy C-Means. Seminar Nasional Aplikasi Teknologi Informasi (SNATI), 53-58.
Kusumadewi, S, dan Purnomo, H. (2010). Aplikasi Logika Fuzzy Untuk Pendukung Keputusan. Yogyakarta: Graha Ilmu.
Wang, Wei., dan Zhang, Qi. (2007). A Fast Algorithm for Approximate Quantiles in High-Speed Data Streams. IEEE.
Published
2022-11-01
How to Cite
NINGTYAS, Retno Ayu; NASUTION, Yuki Novia; SYARIPUDDIN, Syaripuddin. Pengelompokan Kabupaten/Kota Di Pulau Kalimantan Dengan Fuzzy C-Means Berdasarkan Indikator Kemiskinan. EKSPONENSIAL, [S.l.], v. 13, n. 2, p. 141-146, nov. 2022. ISSN 2798-3455. Available at: <https://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/1054>. Date accessed: 10 dec. 2024. doi: https://doi.org/10.30872/eksponensial.v13i2.1054.
Section
Articles