Pengelompokan Kabupaten/Kota Di Pulau Kalimantan Berdasarkan Indikator Indeks Pembangunan Manusia Tahun 2020 Menggunakan Optimasi K-Means Cluster Dengan Principle Component Analysis (PCA)

  • Khoiril Anwar Laboratorium Statistika Komputasi Program Studi Statistka, FMIPA, Universitas Mulawarman
  • Rito Goejantoro Laboratorium Statistika Komputasi Program Studi Statistka, FMIPA, Universitas Mulawarman
  • Surya Prangga Laboratorium Statistika Komputasi Program Studi Statistka, FMIPA, Universitas Mulawarman

Abstract

Data mining is a technique or process to obtain useful information from a large database. Based on its functionality, one of the tasks of data mining is to group data. Cluster analysis is an analysis that aims to group objects based on the information found in the data. One of the cluster analysis methods is the K-Means cluster method, which is a non-hierarchical grouping method by dividing the data set into a number of groups that do not overlap between one group and another. This study aims to classify districts/cities on the island of Kalimantan based on indicators of the human development index and obtain the sillhoutte coefficient value from the optimal cluster analysis using the K-Means algorithm on principle component analysis. The data used is the 2020 human development index data in districts / cities on the island of Kalimantan and used 8 variables from the human development index indicator. The results of the optimal cluster formed in the grouping of regencies/cities on the island of Kalimantan using the K-Means cluster method on the principle component analysis are 4 clusters. Cluster 1 has 20 regencies/cities, cluster 2 has 3 regencies/cities, cluster 3 has 26 regencies/cities and cluster 4 has 7 regencies/cities. The sillhoutte coefficient value for data validation from district/city clustering on the island of Kalimantan using the K-Means cluster method on principle component analysis produces 4 clusters of 0.540 which states that the cluster structure formed in this grouping is a medium structure.

Downloads

Download data is not yet available.

References

Alwi, W. & Hasrul, M. (2018). Analisis Cluster untuk Pengelompokan Kabupaten/Kota di Provinsi Sulawesi Selatan Berdasarkan Indikator Kesejahteraan Rakyat. Jurnal MSA 35-41.
Badan Pusat Statistik. (2020). Indeks Pembangunan Manusia 2020. Indonesia: Badan Pusat Statistika Republik Indonesia.
Ediyanto, M.N. (2013). Pengklasifikasian Karakteristik dengan Metode K-Means Cluster Analysis. Buletin Ilmiah Mat, Stat, dan terapannya, 133-136.
Furqon, M.T., & Muflikhah, L. (2016). Clustering the Potential Risk of Tsunami Using Density-Based Spatial Clustering of Application With Noise (Dbscan). Jurnal of Enviromental Engineering and Sustainable Technology 1-8.
Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E. (2014). Multivariate Data Analysis 7th Edition. New York: Pearson Education, Inc.
Han, J., Kamber, M. & Pei, J. (2012). Data Mining Concepts and Techniques Third Edition. New York: Elsevier.
Johnson, R. A. and Wichern, D. W. (2007). Applied Multivariate Statistical Analysis. New Jersey: Pearson Prentice Hall.
Kaufman, E., & Rousseeuw, P.J. (1990). Finding Groups in Data. New York: John Wiley & Sons.
Muningsih, E., & Kiswati, S. (2015). Penerapan Metode K-Means untuk Clustering Produk Online Shop dalam Penentuan Stok Barang. Jurnal Bianglala Informatika 10-17.
Muningsih, E., Hasan, N., & Sulistyo, G.B. (2020). Penerapan Metode Principal Component Analysis (PCA) untuk Clustering Data Kunjungan Wisatawan Mancanegara ke Indonesia. Jurnal Bianglala Informatika 58-62.
Prasetyo, E. (2012). Data Mining Konsep dan Aplikasi Menggunakan MATLAB. Yogyakarta: Andi.
Smith I.L., & Lindsay. (2002). A Tutorial on Principal Component Analysis. New York: Cornell University.
Supranto, J. (2010). Analisis Multivariate Arti dan Interprestasi, cet. Kedua. Jakarta: Rineka Cipta.
Tan, P., Steinbach, M. & Kumar, V. (2006). Introduction to Data Mining. New York: Pearson Education,Inc.
Talakua, M.W., Leleury, Z.A., & Talluta, A.W. (2017). Analisis Cluster dengan Menggunakan Metode K-Means untuk Pengelompokan Kabupaten/Kota di Provinsi Maluku berdasarkan Indikator Indeks Pembangunan Manusia tahun 2014. Jurnal Ilmu Matematika dan Terapan 119-127.
Wahono, R.S. (2015). Algoritma Cluster Dinamik untuk Optimasi Cluster pada Algoritma K-Means dalam Pemetaan Nasabah Potensial. Journal of Intelligent Systems 33-36.
Windarjono, A. (2015). Analisis Multivariat Terapan dengan Program SPSS, AMOS, dan SMARTPLS Edisi Kedua. Yogyakarta: UPM STIM YKPN.
Xu, R. And Donald, C. W. (2009). Clustering. Hoboken: Wiley.
Published
2022-11-01
How to Cite
ANWAR, Khoiril; GOEJANTORO, Rito; PRANGGA, Surya. Pengelompokan Kabupaten/Kota Di Pulau Kalimantan Berdasarkan Indikator Indeks Pembangunan Manusia Tahun 2020 Menggunakan Optimasi K-Means Cluster Dengan Principle Component Analysis (PCA). EKSPONENSIAL, [S.l.], v. 13, n. 2, p. 131-140, nov. 2022. ISSN 2798-3455. Available at: <https://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/1053>. Date accessed: 10 dec. 2024. doi: https://doi.org/10.30872/eksponensial.v13i2.1053.
Section
Articles