Stance Detection Dengan Algoritme Gated Recurrent Unit (GRU)
Keywords:
stance detection, RNN, GRU, vanishing gradient, long-term dependenciesAbstract
Pentingnya menangani berita palsu menjadi isu yang perlu mendapatkan perhatian khusus. Salah satu sarana yang mudah untuk menyebarkan suatu informasi yang belum tentu akurat adalah melalui media sosial. Diperlukan teknik untuk mendeteksi berita palsu, salah satunya dengan deteksi sikap (stance detection). Stance detection berfokus pada sikap penulis teks dalam menanggapi suatu klaim informasi, apakah sikap tersebut mendukung (favor), menentang (against), atau none. Salah satu metode untuk memproses data teks berdasarkan stance detection adalah Recurrent Neural Network (RNN) dengan algoritme Gated Recurrent Unit (GRU). Secara umum, RNN merupakan salah satu jenis Neural Network yang digunakan untuk memproses data berurutan (sequential data). Dalam struktur arsitekturnya, RNN menggunakan looping untuk dapat mengelola informasi dari masa lalu sehingga secara otomatis memungkinkan informasi dari masa lalu tetap tersimpan. Kelebihan GRU yaitu memiliki sedikit parameter, memiliki kemampuan yang lebih baik dalam menangani long-term dependencies dan membuatnya sesuai untuk melakukan tugas seperti stance detection, serta memiliki kemampuan dalam mengatasi data yang hilang dibandingkan dengan algoritme lain pada RNN. Berdasarkan hal tersebut, penelitian ini bertujuan untuk melakukan kajian tentang algoritme GRU dalam melakukan stance detection.