Model Regresi Cox Proportional Hazard Weibull Pada Data Waktu Rawat Inap Pasien Penderita Covid-19 Di RSUD Abdul Wahab Sjahranie Samarinda
Abstract
Coronavirus disease 2019 or known as COVID-19 is a dangerous infectious disease that is spreading in various parts of the world, one of which is Indonesia. Efforts made by the government to prevent transmission of COVID-19 are imposing strict health protocols, maintaining environmental cleanliness, and carrying out COVID-19 vaccinations for the entire community. Another prevention effort that can be carried out is to provide information through statistical modeling, namely the Cox Proportional Hazard Regression model ( PH) Weibull. The purpose of this study was to obtain the factors that influence the death rate of inpatients with COVID-19 at Abdul Wahab Sjahranie Hospital Samarinda in 2022. The research data is data on the length of stay of patients with COVID-19 at Abdul Wahab Sjahranie Hospital Samarinda in 2022 with events mortality and covariate data consisting of age, sex, temperature, symptoms, oxygen saturation, body weight, and history of comorbidities. The conclusion of the study is that the factors that influence the death rate of patients with COVID-19 are age and symptoms of COVID-19 in patients. The death rate of patients with COVID-19 who are 1 year older is 1.016 times the death rate of patients with COVID-19 who are younger 1 year and the death rate of patients who have symptoms of COVID-19 is 0.312 times that of patients who do not have symptoms of COVID-19 .
References
[2] BNPB. (2022). Update Penanganan COVID-19 17 Oktober 2022. Jakarta: Badan Nasional Penanggulangan Bencana.
[3] Rokom. (2021, Desember 16). Varian Omicron Terdeteksi di Indonesia. Diakses dari https://sehatnegeriku.kemkes.go.id/baca/umum/20211216 /2738991/varian-omicron-terdeteksi-di-indonesia/
[4] Kleinbaum, D.G. & Klein, M. (2005). Survival analysis: a self learning text second edition. New York: Springger.
[5] Collet, D. (2004). Text in statistical science: modelling survival data in medical research second edition. New York: Chapman and Hall.
[6] Lee, E.T. & Wang, J.W. (2003). Statistical method for survival data analysis Third Edition. USA: A John Wiley and Sons, Inc.
[7] Guo, S. 2009. Survival Analysis. New York: Oxford University Press.
[8] Rinni, B.A., Wuryandari, T. & Rusgiyono, A. (2013). Pemodelan Laju Kesembuhan Pasien Rawat Inap Typhus Abdominalis (Demam Tifoid) Menggunakan Regresi Kegagalan Proporsional dari Cox. Jurnal Gaussian, 3(1), 31-40.
[9] Monica, Y.S.A. & Purhadi. (2016). Analisis Faktor Yang Mempengaruhi Laju Kesembuhan Pasien Tuberkulosis Paru di RSUD Tahun 2015 Dr. Soetomo menggunakan Regresi Weibull dan Regresi Cox Proportional Hazard. Jurnal Sains dan Seni ITS, 5(2), 450-455.
[10] Puspita, N.N.R., Susilawati, M. & Suciptawati, N.L.P. (2022). Aplikasi Cox Proportional Hazard Pada Sintasan Pasien Asma. E-Jurnal Matematika, 11(1), 53-57.
[11] Akbar, I., Suyitno., & Wahyuningsih, S. (2020). Model Regresi Cox Weibull dengan Metode Penaksiran Parameter Efron Partial Likelihood. Jurnal Eksponensial, 11(1), 1-8.
[12] Rinne, H. (2009). The Weibull Distribution A Handbook. CRC Press Taylor and Francis Group.
[13] Suyitno. (2017). Penaksiran Parameter dan Pengujian Hipotesis Model Regresi Weibull Univariat. Jurnal Eksponensial, 8(2), 179-184.
[14] Anderson, T.W. & Darling, D.A. (1954). A Test of Goodness of Fit. Journal of American Statistical Association. 49, 765-769.
[15] Khinanti, A.S., Sudarno & Wuryandari, T. (2021). Model Regresi Cox Proportional Hazard pada Data Ketahanan Hidup Pasien Hemodialisa. Jurnal Gaussian, 10(2), 303-314.
[16] Soraya, N., Nasution, Y., & Wahyuningsih, S. (2018). Model Cox Proportional Hazard Pada Kejadian Bersama (Ties) dengan Metode. Jurnal Eksponensial, 9(1), 95-104.
[17] Pawitan, Y. (2001). In All Likelihood Statistical Modelling and Inference Using Likelihood. Sweden: Clarendon Press-Oxford.
[18] Fathurahman. (2009). Pemilihan model regresi terbaik menggunakan Akaike’s Information Criterion. Jurnal Eksponensial, 1(2), 26-33.