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Abstract 

This work investigates the application of Physics-Informed Neural Networks (PINNs) as 
a proof-of-concept and qualitative approach for obtaining numerical solutions to the time-
independent Schrödinger equation of the quantum harmonic oscillator in one, two, and 
three spatial dimensions. Fully connected neural network architectures are constructed to 
approximate wavefunctions over finite symmetric domains, while the corresponding 
energy eigenvalues are treated as trainable parameters. The training strategy employs 
randomly sampled interior points to enforce the Schrödinger operator residual and 
boundary points to impose vanishing wavefunction constraints. For the 1D quantum 
harmonic oscillator, the trained model yields a ground-state energy of E = 1.2939 after 
12,000 training iterations. In the 2D case, convergence is achieved at E = 2.1352 within 
14,000 iterations, while the 3D configuration attains E = 2.6377 after 12,000 iterations. 
While these results reproduce the expected qualitative trend of increasing ground-state 
energy with dimensionality, deviations from the exact analytical values remain 
significant, with relative errors of approximately 14% in 1D, 15% in 2D, and 25% in 3D. 
These discrepancies indicate that, in its current implementation, PINNs face optimization 
challenges and exhibit sensitivity to sampling density, boundary enforcement, and 
network architecture. Nevertheless, the trained models successfully capture the essential 
spatial symmetries and Gaussian-like profiles characteristic of harmonic oscillator ground 
states across all dimensions. Overall, this study should be regarded as a qualitative and 
pedagogical demonstration, highlighting the potential of PINNs for stationary quantum 
systems while emphasizing the need for further refinements—such as improved sampling 
strategies, loss-function balancing, and deeper network architectures—to achieve higher 
quantitative accuracy. 

INTRODUCTION  

The time-independent Schrödinger equation constitutes one of the fundamental pillars of 
quantum mechanics, as it governs stationary states and determines the energy spectrum of 
quantum systems subjected to a given potential [1]. For certain idealized potentials, such as the 
Quantum Harmonic Oscillator (QHO), exact analytical solutions for both eigenvalues and 
eigenfunctions can be derived through the eigenvalue–eigenfunction formulation [2][3]. Owing 
to its mathematical tractability and physical relevance, the QHO serves as a canonical benchmark 
model in quantum mechanics, with applications ranging from molecular vibrations and phonon 
dynamics to trapped particle systems. 
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In many realistic quantum systems, however, the potential landscape becomes spatially 
complex and analytically intractable. Under such conditions, numerical approaches are 
indispensable for solving the Schrödinger equation [4]. Conventional mesh-based numerical 
methods, including the finite difference method (FDM) and the finite element method (FEM), 
have been widely employed and have demonstrated high accuracy for a broad class of problems 
[5][6]. Nevertheless, these methods rely on explicit spatial discretization, which leads to rapidly 
increasing computational cost as the dimensionality of the system grows. This challenge is closely 
associated with the curse of dimensionality, which significantly limits the scalability of 
traditional numerical solvers for high-dimensional quantum systems [7][4]. 

Recent progress in machine learning and scientific computing has motivated the 
development of Physics-Informed Neural Networks (PINNs) as an alternative framework for 
solving partial differential equations [8][9]. PINNs incorporate physical laws directly into the 
training process by embedding the governing equations and boundary conditions into the loss 
function. Unlike mesh-based approaches, PINNs operate on randomly sampled collocation 
points and do not require explicit grid construction or large labeled datasets. This mesh-free 
characteristic provides conceptual flexibility and has enabled successful applications of PINNs 
in diverse areas, including fluid dynamics, nonlinear systems, and quantum mechanics 
[10][11][2]. 

Despite these advantages, the performance of PINNs is known to be sensitive to several 
factors, such as the stability of the optimization process, the distribution of collocation points, 
and the relative weighting of loss-function components [7][4][12]. Optimization difficulties, 
including gradient pathologies and the presence of multiple local minima, may hinder 
convergence toward accurate solutions, particularly for eigenvalue problems and higher-
dimensional systems [13]. These limitations underscore the need for systematic studies that 
assess both the capabilities and constraints of PINNs when applied to fundamental quantum 
models. 

In this study, PINNs are applied to solve the time-independent Schrödinger equation for 
the quantum harmonic oscillator in one, two, and three spatial dimensions using natural units 
(ℏ =  𝑚  =  𝜔 = 1)  Under this formulation, the Hamiltonian takes the standard form  

𝑯 =  −
𝟏

𝟐
 𝛁𝟐 +

𝟏

𝟐
𝒓𝟐 , 

for which the analytical ground-state energy is given by 𝐸0 = 𝑑/2, where 𝑑denotes the 
spatial dimensionality. This well-established result provides a consistent reference for evaluating 
the performance of the PINNs-based approximation. The accuracy of the predicted eigenenergies 
and wave functions is assessed through direct comparison with the corresponding analytical 
solutions. Particular attention is given to the effect of increasing spatial dimensionality on 
training stability and solution accuracy. Rather than positioning PINNs as a replacement for 
established high-precision numerical solvers, this work aims to provide a qualitative and 
pedagogical evaluation of PINNs as a proof-of-concept framework for quantum eigenvalue 
problems. By clarifying both their strengths and limitations in a controlled benchmark setting, 
this study seeks to contribute to the broader understanding of machine-learning–based 
approaches for solving quantum systems with increasingly complex potential structures. 

 
Mathematical Formulation 
1. Time-Independent Schrödinger Equation 

The fundamental equation employed in this study is the time-independent Schrödinger 
equation, which governs the stationary states of a quantum particle with mass moving in an 
external potential 𝑉(𝐫). This equation forms the basis of numerous quantum mechanical models 
and is widely adopted in Physics-Informed Neural Networks (PINNs) for solving eigenvalue 
problems [2][14][15]. 

The general eigenvalue formulation is expressed as : 
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𝑯̂𝝍 ( 𝒓) = 𝑬𝝍(𝒓), (1) 

where the Hamiltonian operator is given by : 

𝑯̂  =  −  
ℏ𝟐

𝟐𝒎
 𝛁𝟐  +  𝐕 (𝐫) (2) 

Substituting the Hamiltonian into Eq. (1) yields the explicit form : 

−  
ℏ𝟐

𝟐𝒎
 𝛁𝟐 𝝍 (𝒓)  +  𝑽 (𝒓) 𝝍(𝒓)  =  𝐄 𝝍 (𝒓) (3) 

For the quantum harmonic oscillator (QHO), the potential energy function is defined as: 

𝐕(𝐫)  =  
𝟏

𝟐
 𝒎𝝎𝟐 ∣ 𝒓 ∣𝟐 (4) 

where 𝜔 denotes the angular frequency of the oscillator.  

Here, the position vector is defined as 𝒓 = (𝒙, 𝒚, 𝒛), and its Euclidean norm is given by : 

∣ 𝒓 ∣𝟐 = 𝒙𝟐 + 𝒚𝟐 +  𝒛𝟐 

In lower-dimensional cases, this definition reduces accordingly. The quantum harmonic 

oscillator is frequently employed as an analytical benchmark in quantum mechanics because its 

eigenvalues and eigenfunctions are known exactly and exhibit well-defined symmetry properties 

[2][10]. 

1. Natural Units 

In this work, natural units are adopted by setting : 

ℏ = 𝟏,  𝒎 = 𝟏,  ω  = 1, (5) 

which simplifies Equation (3) to the dimensionless form : 

−  
𝟏

𝟐
 𝛁𝟐 𝝍 (𝒓)  +

𝟏

𝟐
 ∣ 𝒓 ∣𝟐 𝝍(𝒓) = 𝑬𝝍(𝒓) (6) 

All subsequent one, two, and three dimensional formulations are derived consistently from 

Equation (6). The factor of 1/2 appearing in both the kinetic and potential energy terms is 

retained throughout, corresponding to the standard quantum harmonic oscillator Hamiltonian 

in natural units. 

2. One Dimensional Quantum Harmonic Oscillator (1D QHO) 

For the one-dimensional case with spatial coordinate 𝑥, Eq. (6) reduces to : 

− 
𝟏

𝟐

𝒅𝟐𝝍(𝒙)

𝒅𝒙𝟐
 + 

𝟏

𝟐
𝒙𝟐𝝍(𝒙) = 𝑬𝝍(𝒙) (7) 

 

3. Two – Dimensional Quantum Harmonic Oscillator (2D QHO) 

For the two-dimensional configuration with spatial coordinates (x, y) the Schrödinger 

equation becomes : 

− 
𝟏

𝟐
(

𝝏𝟐𝝍

𝝏𝒙𝟐 +
𝝏𝟐𝝍

𝝏𝒚𝟐 ) +
𝟏

𝟐
(𝒙𝟐 + 𝒚𝟐)ψ (x,y)= 𝑬𝝍(𝒙, 𝒚) (8) 

 

4. Three- Dimensional Quantum Harmonic Oscillator (3D QHO) 

For the three-dimensional case with spatial coordinates (x, y, z) the governing equation is 

written as : 

−  
𝟏

𝟐
(

𝝏𝟐𝝍

𝝏𝒙𝟐
+

𝝏𝟐𝝍

𝝏𝒚𝟐
+  

𝝏𝟐𝝍

𝝏𝒛𝟐
) +

𝟏

𝟐
(𝒙𝟐 + 𝒚𝟐 +  𝒛𝟐)𝝍(𝒙, 𝒚, 𝒛) = 𝑬𝝍(𝒙, 𝒚, 𝒛) (9) 
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Here, the Laplacian operator is defined consistently as : 

𝛁𝟐 = (
𝝏𝟐

𝝏𝒙𝟐
+

𝝏𝟐

𝝏𝒚𝟐
+  

𝝏𝟐

𝝏𝒛𝟐
), 

ensuring a correct formulation of the three-dimensional quantum harmonic oscillator. 
 
Presentation of Tables and Figures 

The main results of this study consist of the numerical approximation of ground-state 
eigenenergies and the qualitative visualization of wave-function profiles for the quantum 
harmonic oscillator (QHO) in one-, two-, and three-dimensional configurations using Physics-
Informed Neural Networks (PINNs). A quantitative comparison between the eigenenergies 
predicted by PINNs and the corresponding analytical ground-state energies, defined as  𝐸0 =
𝑑/2, is presented in Table 1. The spatial structure of the learned ground-state wave function for 
the one-dimensional case is illustrated in Figure 3. For the two- and three-dimensional 
configurations, the wave function profiles obtained using PINNs are shown in Figure 4, 
highlighting the symmetry and qualitative features of the ground states in higher dimensions.  

Table 1. Comparison between ground-state energies obtained using PINNs (𝑬PINN) and 

analytical ground-state energies as ( 𝑬0 = 𝒅/𝟐) for the quantum harmonic oscillator in one, 

two, and three spatial dimensions. 

System EPINN Eanalitik ( 𝑬0 = 𝒅/𝟐) 

1D 1.2939 0.50 

2D 2.1352 1.00 

3D 2.6377 1.50 

 

 
 

Figure 3. Visualization of the ground-state wave function of the one-dimensional 
quantum harmonic oscillator obtained using PINNs 

  
 

 
 

(a) 2D (b) 3D 
Figure 4. Visualization of the ground-state wave function of the quantum harmonic 

oscillator obtained using PINNs: (a) two-dimensional case and (b) three-dimensional case. 
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RESEARCH METHOD 

This study employs a computational approach based on numerical simulation to solve 
the time-independent Schrödinger Equation using the Physics-Informed Neural Networks 
(PINNs) method. This approach is chosen because it integrates physical principles directly into 
the neural network training process through the minimization of differential equation residuals 
and the enforcement of boundary conditions, thereby eliminating the need for explicitly labeled 
datasets. [16] 

1. Physical Model 
The system under investigation is the Quantum Harmonic Oscillator (QHO) in one-, two-
, and three-dimensional configurations. The time-independent Schrödinger equation can 
be expressed as: 

−  
𝟏

𝟐
 𝛁𝟐 𝝍 (𝒓)  + 𝑽(𝒓)𝝍(𝒓) = 𝑬𝝍(𝒓) 

 

with 𝑉(𝐫) =
1

2
∣ 𝐫 ∣2 as the harmonic potential. The QHO system is chosen because it has 

well-known analytical solutions, making it a suitable reference for evaluating the 
accuracy of PINNs predictions [17] 
 
 
 

2. PINNs Training 
The neural network used in this study is a fully connected feed-forward neural network 
(FNN) with a hyperbolic tangent activation function. The model is trained to minimize a 
loss function consisting of: 

• the residual of the Schrödinger Equation, 

• boundary conditions, and 

• the normalization consistency of the wave function. 

The use of PINNs is motivated by their ability to approximate PDE solutions without 

requiring explicit discretization of the domain. Training parameters such as the number 

of collocation points, learning rate, and network size are adjusted to achieve stable 

convergence. Optimization is performed using the Adam algorithm and subsequently 

refined with the L-BFGS-B method. [18] 

3. Simulation Procedure 
The simulation was conducted using the Python programming language. Libraries used 
include NumPy, SciPy, and Matplotlib for numerical computation, optimization, and 
visualization. The entire training and testing process was carried out in the Jupyter 
Notebook environment. The research procedure involves the following steps [19]: 

• Initialization of physical parameters (dimension, domain, and potential form). 

• Determination of collocation points within the domain using uniform random 
sampling. 

• Training of PINNs using a combined loss function. 

• Validation of the solution by comparing the eigenenergies with analytical solutions. 

• Visualization of the trained wave function. 
 

4. Evaluation Method 
Evaluation is carried out by comparing the outputs of PINNs with the analytical solutions 
for the eigenenergy values and wave function profiles. In natural units (ℏ = 𝑚 = 𝜔 = 1), 
the theoretical ground-state energy is given by : 
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𝐸0 =
𝑑

2
 

 
where d denotes the dimensionality of the system. The error is calculated using the 
relative error, while the agreement of the wave function shape is visually evaluated 
through plots and contours.[20] 

RESULT AND DISCUSSION 

This section presents the research results and analysis of the application of Physics-
Informed Neural Networks (PINNs) in solving the time-independent Schrödinger Equation for 
the Quantum Harmonic Oscillator (QHO) system in one-, two-, and three-dimensional 
configurations. The results are presented in the form of comparisons of eigenenergy values with 
analytical solutions, visualizations of wave functions, as well as evaluations of training 
convergence and sensitivity to collocation points.  

1. Numerical Results of Eigenenergies 

Based on the computational results, the PINNs model is able to estimate the ground-

state eigenenergies for the 1D, 2D, and 3D QHO. The comparison is made with the 

analytical solution in natural units (ℏ = 𝑚 = 𝜔 = 1), so that the theoretical ground-

state energy is given by: 

𝐸0 =
𝑑

2
 

 
where d denotes the dimensionality of the system. 

The results show that the predicted energies for the 1D and 2D cases are relatively 
close to the analytical solutions, while larger deviations are observed in the 3D 
configuration. In general, the relative error increases as the system dimensionality 
increases. This is consistent with the phenomenon of the curse of dimensionality, where 
higher dimensions expand the solution space, thereby increasing optimization 
complexity and reducing the stability of the PINNs approximation.  

These findings are consistent with previous studies reporting that the 
performance of PINNs degrades in multidimensional systems. Several studies have 
shown that the prediction of the energy spectrum for multi-dimensional QHOs using 
PINNs tends to have larger errors compared to 1D systems [2][7][9]. Furthermore, [16] 
reported that energy errors can increase significantly as the potential structure becomes 
more complex, unless additional regularization strategies are applied to the loss 
function. Meanwhile, [11] demonstrated that the performance of PINNs in nonlinear 
Schrödinger systems is highly sensitive to optimization quality and training conditions. 

Overall, these results indicate that increasing dimensionality is a factor that 
reduces the accuracy of energy predictions in PINNs, highlighting the need for 
advanced training strategies such as adaptive sampling or operator-based neural 
solvers to mitigate performance degradation. 

 
1. Wave Function Visualiazation 

The visualization of the wave function obtained from the trained PINNs model 
has been presented in the previous section. The wave function visualization from the 
PINNs training shows good agreement with the physical characteristics of the QHO. 

For the 1D configuration, the wave function exhibits a Gaussian shape with a 
symmetric peak at the center of the potential (𝑥 = 0) and decays exponentially toward 
the edges of the domain. This profile is consistent with the analytical ground-state 

solution of the QHO, 𝜓(𝑥) ∝ 𝑒−𝑥2/2, as derived in the standard formulation of quantum 
mechanics [21].  
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For the 2D configuration, the visualization results in the form of contours show 
the maximum probability density at the center (𝑥, 𝑦) = (0,0), then gradually decreasing 
radially outward, following the spherical symmetry dictated by the harmonic potential 

𝑉(𝑥, 𝑦) =
1

2
(𝑥2 + 𝑦2). This pattern demonstrates that PINNs can replicate the radial 

structure of the wave function without requiring a discrete mesh, supporting the 
findings of [22], which highlight the flexibility of PINNs in high-dimensional 
continuous domains. 

Meanwhile, in the 3D configuration, a similar pattern is observed, with the highest 
probability concentration at the center and radial decay outward. However, the results 
exhibit larger numerical fluctuations compared to the 1D and 2D cases, potentially 
arising from optimization difficulties in high-dimensional systems and the sensitivity 
of collocation points to gradient errors [7][23]. This phenomenon indicates that, 
although the wave function shape remains physically acceptable, the numerical outputs 
in 3D tend to be less stable and require adaptive training strategies or additional 
regularization. 

Overall, the visualization results indicate that PINNs have a strong capability in 
capturing the spatial characteristics of the wave function for the QHO, even when the 
eigenenergy accuracy is not optimal. These findings are consistent with [2], which 
reported that the representation of wave function shapes is generally more stable than 
the prediction of energy values. Additionally, [10] showed that in some 1D Schrödinger 
cases, the wave function distribution predicted by PINNs still aligns well with the exact 
solution, even when the exact energy exhibits a significant relative error. 

These findings indicate that PINNs can provide a reliable representation of wave 
function shapes across various dimensions, even though increasing the complexity of 
the quantum system amplifies challenges related to stability and energy accuracy. 

 
2. Training Convergence and Stability Analysis 

Training convergence is observed through the reduction of the loss function 
during the optimization process. In the 1D system, the loss decreases steadily, 
indicating that PINNs can effectively learn the system dynamics. However, in the 2D 
system and especially in 3D, the loss reduction exhibits larger fluctuations, plateau 
tendencies, and slower convergence. Factors influencing performance degradation 
include : 

• Complexity of the optimization landscape 
The presence of numerous local minima and saddle points in high-dimensional 
space complicates the training process [23][7]. 

• Increase in the number of wave function parameters 
Higher dimensions require networks with greater capacity to capture the 
structure of the wave function [2][14]. 

• Gradient pathology 
Extremely small or unstable gradients cause stagnation, resulting in the loss 
remaining nearly constant even as iterations continue [23]. 
 

These limitations are consistent with the literature, which states that PINNs are 
prone to training instability in high-dimensional domains [9]. Several approaches, such 
as adaptive sampling, curriculum training, and loss reweighting, are recommended to 
enhance stability and improve convergence. 

 
 

3. Collocation Point Sensitivity Analysis 
Sensitivity analysis based on variations in the number of collocation points shows 

that increasing the collocation point density significantly reduces energy errors in the 
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1D case. This indicates that sampling resolution has a strong impact on the accuracy of 
PINNs predictions. However, in the 2D and 3D configurations, a uniform increase in 
collocation points does not yield significant improvements in accuracy. This suggests 
that uniform random sampling is suboptimal for addressing the complexity of residual 
gradients and solution structures in multidimensional domains. Strategies such as 
adaptive collocation or importance sampling are considered more effective [4].   

Several studies support this; for example, [24] demonstrated that the QR-DEIM 
method for adaptive point selection can enhance performance in multidimensional 
PDEs. Additionally, results from the PINNacle project [25] show that adaptive 
sampling and loss reweighting consistently outperform static sampling in high-
dimensional PDEs. Thus, adaptive collocation point selection is a crucial step in 
improving the performance of PINNs in multidimensional quantum systems. 

 
4. Limitation 

Several limitations identified in this study include: 

• Errors increase significantlyin the 3D system 
Influenced by the curse of dimensionality, which enlarges the solution space 
and makes optimization increasingly difficult [26]. 

• Convergence difficulties and the emergence of stagnation (plateau) 
The complex optimization landscape and the phenomenon of gradient 
pathology make it difficult for training to reach the optimal solution [7]. 

• Random collocation point sampling is not yet optimal 
Random points fail to capture regions with high residual gradients. An adaptive 
approach is required [27]. 

• Treating energy as a trainable variable increases the nonlinearity of the 
system 
When energy is included in the loss function, optimization becomes more 
difficult, as reported by [2]. 

• Conventional MLP architectures are less efficient for high-dimensional radial 
systems 
Feed-forward networks with tanh activation are less effective at capturing radial 
structures in 3D domains. Alternatives such as Fourier Neural Operator (FNO) 
or DeepONet have been reported to perform better in multidimensional 
systems [23].  

CONCLUSION 

This study has applied Physics-Informed Neural Networks (PINNs) to solve the time-
independent Schrödinger Equation for the Quantum Harmonic Oscillator (QHO) system in one-
, two-, and three-dimensional configurations. The results show that PINNs can approximate the 
eigenenergies and wave function shapes with varying quality, depending on the system's 
dimensionality. In the 1D and 2D configurations, the predicted eigenenergies are relatively close 
to the analytical solutions, whereas deviations increase significantly in the 3D system. This 
indicates that the performance of PINNs is strongly affected by the curse of dimensionality, 
which makes the optimization process more complex. Nevertheless, the wave function 
visualizations exhibit qualitative agreement with the physical characteristics of the QHO across 
all configurations, demonstrating that PINNs can still effectively represent spatial structures even 
when energy accuracy is not optimal.  

Convergence and collocation point sensitivity analyses indicate that increasing the number 
of collocation points can reduce errors in low-dimensional systems, but is less effective in higher 
dimensions. Therefore, advanced training strategies, such as adaptive sampling, adaptive 
collocation, and alternative architectures like the Fourier Neural Operator or DeepONet, are 
recommended to improve training stability and prediction accuracy in multidimensional 
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systems. Overall, this study highlights the potential of PINNs as a physics-informed 
computational method for solving quantum problems, particularly in low-dimensional domains. 
On the other hand, computational challenges in multidimensional systems remain open for 
further exploration, especially in the context of architectural improvements and training 
strategies. 

REFERENCES 

[1] D. J. Griffiths, R. College, F. Darrell, and R. College, “Introduction to Quantum 
Mechanics,” no. November, pp. 9–10, 2025. https://doi.org/10.1017/9781316995433  

[2] L. Brevi, A. Mandarino, and E. Prati, “A Tutorial on the Use of Physics-Informed Neural 
Networks to Compute the Spectrum of Quantum Systems,” 2024. 
https://doi.org/10.3390/technologies12100174 

[3] P. Vetter et al., “Report Decoding Natural Sounds in Early ‘“ Visual ”’ Cortex of 
Congenitally Blind Individuals ll ll Decoding Natural Sounds in Early ‘“ Visual ”’ Cortex 
of Congenitally Blind Individuals,” pp. 3039–3044, 2020, doi: 10.1016/j.cub.2020.05.071. 

[4] Z. Ren, S. Zhou, D. Liu, and Q. Liu, “applied sciences Physics-Informed Neural Networks : 
A Review of Methodological Evolution , Theoretical Foundations , and Interdisciplinary 
Frontiers Toward Next-Generation Scientific Computing,” vol. M, pp. 1–17, 2025. 
https://doi.org/10.3390/app15148092 

[5] S. Wu, A. Zhu, Y. Tang, and B. Lu, “Convergence of Physics-Informed Neural Networks 
Applied to Linear Second-Order Elliptic Interface Problems,” vol. 33, no. 2, pp. 596–627, 
2023, doi: 10.4208/cicp.OA-2022-0218. https://doi.org/10.4208/cicp.OA-2022-0218 

[6] P. Pantidis, H. Eldababy, C. M. Tagle, and M. E. Mobasher, “Error convergence and 
engineering-guided hyperparameter search of PINNs: Towards optimized I-FENN 
performance”. https://doi.org/10.48550/arXiv.2303.03918 

[7] S. Universit, “CONVERGENCE AND ERROR ANALYSIS OF PINNS,” pp. 1–56, 2022. 
https://doi.org/10.48550/arXiv.2305.01240 

[8] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-Informed Neural Networks : A 
Deep Learning Framework for Solving Forward and Inverse Problems Involving 
Nonlinear Partial Differential Equations”. https://doi.org/10.1016/j.jcp.2018.10.045 

[9] K. Luo, J. Zhao, Y. Wang, J. Li, and J. Wen, “Physics-informed neural networks for PDE 
problems : a comprehensive review,” 2025. https://doi.org/10.1007/s10462-025-11322-7 

[10] S. Sarkar, “Physics-Informed Neural Networks for One-Dimensional Quantum Well 
Problems,” pp. 1–23. https://doi.org/10.48550/arXiv.2504.05367 

[11] N. Hoffmann, “Physics-Informed Neural Networks as Solvers for the Time-Dependent 
Schrödinger Equation”. https://doi.org/10.48550/arXiv.2210.12522 

[12] S. Shi, D. Liu, R. Ji, and Y. Han, “An Adaptive Physics-Informed Neural Network with 
Two-Stage Learning Strategy to Solve Partial Differential Equations,” vol. 16, no. 2, pp. 
298–299, 2023, doi: 10.4208/nmtma.OA-2022-0063. https://doi.org/10.4208/nmtma.OA-
2022-0063 

[13] H. Petzka and C. Sminchisescu, “Non-attracting Regions of Local Minima in Deep and 
Wide Neural Networks,” vol. 22, pp. 1–34, 2021. 
https://doi.org/10.48550/arXiv.1812.06486 

[14] T. De Ryck, “arXiv : 2402 . 10926v1 [ math . NA ] 30 Jan 2024 Numerical analysis of physics-
informed neural networks and related models in physics-informed machine learning”. 
https://doi.org/10.1017/S0962492923000089 

[15] Z. Hu, “Tackling the Curse of Dimensionality with Physics-Informed Neural Networks,” 
pp. 1–34. https://doi.org/10.1016/j.neunet.2024.106369 

[16] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks : A 
deep learning framework for solving forward and inverse problems involving nonlinear 
partial differential equations,” J. Comput. Phys., vol. 378, pp. 686–707, 2019, doi: 
10.1016/j.jcp.2018.10.045. 



Nisa et al.: Application of Physics-Informed Neural Networks (PINNs) for the Numerical Solution... 

 

Halaman | 651 

[17] E. Solano and C. Flores-garrigos, “P -i n n,” pp. 1–28. 
https://doi.org/10.48550/arXiv.2309.04434 

[18] B. Das, T. Wang, and G. Dai, “Asymptotic Behavior of Common Connections in Sparse,” 
pp. 1–21, 2021. https://doi.org/10.48550/arXiv.2106.08472 

[19] P. Virtanen et al., “SciPy 1 . 0 — Fundamental Algorithms for Scientific Computing in 
Python,” pp. 1–22. https://doi.org/10.1038/s41592-019-0686-2 

[20] R. Cass, T. V. A. N. D. E. N. Hove, and J. Scholbach, “Central motives on parahoric flag 
varieties”. https://doi.org/10.48550/arXiv.2403.11007 

[21] D. J. Griffiths and D. F. Schroeter, “INTRODUCTION TO Quantum Mechanics Third 
edition”. https://doi.org/10.1017/9781316995433 

[22] H. Jin, “Physics-Informed Neural Networks for Quantum Eigenvalue Problems”. 
https://doi.org/10.48550/arXiv.2203.00451 

[23] J. Wang, “An Optimistic Acceleration of AMSGrad for Nonconvex Optimization,” 2021. 
https://doi.org/10.48550/arXiv.1903.01435 

[24] A. Celaya, D. Fuentes, and B. Riviere, “Informed Neural Networks via the QR Discrete,” 
pp. 1–34. https://doi.org/10.48550/arXiv.2501.07700 

[25] X. P. Selection, “PINNACLE : PINN A DAPTIVE C OL L OCATION,” pp. 1–36, 2024. 
https://doi.org/10.48550/arXiv.2404.07662 

[26] C. Methods, A. Mech, Z. Hu, K. Kawaguchi, Z. Zhang, and G. Em, “Tackling the curse of 
dimensionality in fractional and tempered fractional PDEs with physics-informed neural 
networks,” Comput. Methods Appl. Mech. Eng., vol. 432, no. PB, p. 117448, 2024, doi: 
10.1016/j.cma.2024.117448. 

[27] I. Conference and M. Springer, “This is a repository copy of Investigating Guiding 
Information for Adaptive Collocation Point Sampling in PINNs . White Rose Research 
Online URL for this paper : Version : Accepted Version Part III . International Conference 
on Computational Science ( ICCS ) 2024 : 24th personal use . Not for redistribution . The 
definitive Version of Record was published in Investigating Guiding Information for 
Adaptive Collocation Point Sampling in PINNs,” 2024. https://doi.org/10.1007/978-3-
031-63759-9_36 

 
 


