Pengelompokan Provinsi di Indonesia berdasarkan Ketimpangan Akses Layanan Kesehatan Tahun 2024 Menggunakan Pendekatan Cluster Hirarki

Authors

DOI:

https://doi.org/10.30872/40w3md62

Keywords:

Healthcare Access Inequality, Hierarchical Cluster, Average Linkage, Self-Medication, Indonesia, SDGs

Abstract

Health disparities remain a major challenge in Indonesia, particularly in terms of access to healthcare services across provinces. This study aims to classify 38 Indonesian provinces based on inequality in healthcare access in 2024 using a hierarchical clustering approach. Three key indicators were used: the number of hospitals, the number of medical personnel, and the percentage of people experiencing health complaints who opted for self-medication. The analysis identified the average linkage method as the most suitable model, supported by the highest cophenetic correlation coefficient (0,911). The results revealed two distinct clusters. The first cluster includes most provinces outside Java Island, characterized by limited healthcare infrastructure and personnel. The second cluster comprises four provinces on Java Island with advanced healthcare facilities but a high rate of self-medication. These findings suggest that healthcare access inequality is influenced not only by infrastructure but also by social and behavioral factors. Therefore, policy recommendations should be tailored accordingly: infrastructure improvement and equitable distribution of medical personnel for the first cluster, and health education interventions for the second. This study contributes to evidence-based policy design in line with the Sustainable Development Goals (SDGs), particularly the goal of ensuring equitable healthcare access for all.

Downloads

Download data is not yet available.

References

Aselnino, P., & Wijayanto, A. W. (2024). Analisis Perbandingan Metode Hierarchical dan Non-Hierarchical dalam Pembentukan Cluster Provinsi di Indonesia Berdasarkan Indikator Women Empowerment. Indonesian Journal of Applied Statistics, 6(1), 57-68. https://doi.org/10.13057/ijas.v6i1.68876

Badan Pusat Statistik. (2023). Statistik Kesehatan Indonesia 2023. Jakarta: BPS.

Bhahari, R. H., & Kusnawi. (2024). Clustering Analysis of Socio-Economic Districts/Cities in East Java Province Using PCA and Hierarchical Clustering Methods. Sinkron: Jurnal dan Penelitian Teknik Informatika, 8(4). https://doi.org/10.33395/sinkron.v8i4.14078

Botta-Dukát, Z. (2023). A new approach for evaluating internal cluster validation indices. arXiv. https://arxiv.org/abs/2308.03894

Halim, N. N., & Widodo, E. (2017). Clustering Dampak Gempa Bumi di Indonesia Menggunakan Kohonen Self Organizing Maps (SOM). Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika Dan Nilai-Nilai Islami), 1(1): 188–194.

Han, J., Pei, J., & Kamber, M. (2022). Data Mining: Concepts and Techniques (4th ed.). Morgan Kaufmann.

Iglesias Vázquez, F., & Zseby, T. (2023). Temporal silhouette: validation of stream clustering robust to concept drift. Machine Learning, 113(11), 2067–2091. https://doi.org/10.1007/s10994-023-06462-2

Kementerian Kesehatan Republik Indonesia. (2023). Profil Kesehatan Indonesia Tahun 2022. Jakarta: Kemenkes RI.

Kementerian Koordinator Bidang Pembangunan Manusia dan Kebudayaan Republik Indonesia. (2023). Menko PMK serahkan penghargaan Swasti Saba untuk kabupaten/kota sehat 2023. URL: https://www.kemenkopmk.go.id/menko-pmk-serahkan-penghargaan-swasti-saba-untuk-kabupatenkota-sehat-2023. Diakses tanggal 22 Juni 2025.

Liu, X., Cao, J., Ge, R., & Jiang, O. (2025). Evaluating medical service performance of hospitals in Sichuan Province, China: exploratory factor analysis and hierarchical clustering analysis based on diagnosis-related groups. Frontiers in Public Health, 13, 1617945.

Nugroho, A., Suryanto, S., & Utomo, B. (2020). Disparitas akses pelayanan kesehatan di Indonesia: analisis data Riskesdas. Jurnal Kebijakan Kesehatan Indonesia, 9(2), 87–96. https://doi.org/10.7454/jkki.v9i2.3021

Putri, A. N., & Sari, K. P. (2021). Dimensi akses pelayanan kesehatan dan pengaruhnya terhadap pemanfaatan fasilitas kesehatan. Jurnal Kesehatan Masyarakat Andalas, 15(1), 45–52. https://doi.org/10.24893/jkma.v15i1.396

Ramadhan, A. F., & Utami, S. R. (2022). Efektivitas program JKN dalam memperluas akses layanan kesehatan: Studi kasus di wilayah pedesaan. Media Kesehatan Masyarakat Indonesia, 21(4), 232–240. https://doi.org/10.30597/mkmi.v21i4.16150

Riyadi, B., & Hanum, N. (2021). Ketimpangan Distribusi Tenaga Kesehatan di Indonesia: Analisis Deskriptif Berdasarkan Data Nasional. Jurnal Kebijakan Kesehatan Indonesia, 10(2), 85–95.

Saraçli, S., Doğan, N., & Doğan, İ. (2013). Comparison of hierarchical cluster analysis methods by cophenetic correlation. Journal of Inequalities and Applications, 2013(1), 203. https://doi.org/10.1186/1029-242X-2013-203

Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O. P., Tiwari, A., ... & Lin, C. T. (2021). Parallel and scalable Dunn Index for the validation of big data clustering. Pattern Recognition Letters, 143, 1-7. https://doi.org/10.1016/j.patrec.2021.01.011

Tan, P.-N., Steinbach, M., & Kumar, V. (2020). Introduction to Data Mining (2nd ed.). Pearson.

Utari, D. T., & Hanun, D. S. (2021). Hierarchical Clustering Approach for Region Analysis of Contraceptive Users. EKSAKTA: Journal of Sciences and Data Analysis, 99-108. https://doi.org/10.20885/EKSAKTA.vol2.iss2.art3

Vichi, M., Cavicchia, C., & Groenen, P. J. (2022). Hierarchical means clustering. Journal of Classification, 39(3), 553-577.

Wijuniamurti, S., Nugroho, S., & Rachmawati, R. (2022). Agglomerative Nesting (AGNES) Method and Divisive Analysis (DIANA) Method for Hierarchical Clustering on Some Distance Measurement Concepts. Journal of Statistics and Data Science, 1(1). https://doi.org/10.33369/jsds.v1i1.21009

Wulandari, R. D., Kurniasari, I. D., & Sari, D. K. (2020). Persepsi Masyarakat Terhadap Akses Pelayanan Kesehatan di Indonesia. Jurnal Administrasi Kesehatan Indonesia, 8(1), 34–42.

Xu, D., & Tian, Y. (2022). A Comprehensive Survey of Clustering Algorithms. Annals of Data Science, 9, 1–36. https://doi.org/10.1007/s40745-020-00233-9

Published

2025-12-09