Pengelompokan Kabupaten/Kota di Pulau Kalimantan Berdasarkan Indeks kemahalan Konstruksi Tahun 2020-2024  Menggunakan Algoritma Spatio Temporal-DBSCAN

Penulis

DOI:

https://doi.org/10.30872/76nh3g16

Kata Kunci:

construction cost index, silhouette coefficient, spatio temporal-DBSCAN

Abstrak

The Construction Cost Index (CCI) is an indicator that describes the level of cost of construction in a region compared to the national average. The CCI between districts/cities in Kalimantan Island in 2024 still shows a considerable difference. To understand the pattern and similarity of CCI values between districts/cities, a clustering approach is needed. Clustering is a data analysis technique to group data based on similarity. The clustering algorithm used in this research is the Spatio Temporal Density Based on Spatial Clustering of Application with Noise (Spatio Temporal-DBSCAN) algorithm which forms clusters based on density in spatial and temporal aspects simultaneously. The purpose of this study is to obtain the optimal cluster in clustering districts/cities on Kalimantan Island based on spatial aspects (longitude and latitude data) and temporal aspects (IKK value from 2020-2024) based on the Silhouette Coefficient (SC) value of the Eps and MinPts combinations that were tried. Based on the clustering results, 2 clusters and also noise were obtained from the combination of Eps1=2, Eps2=13 and MinPts=8 with an SC value of 0.3179 which means that the optimal cluster formed has a weak structure.

Unduhan

Data unduhan tidak tersedia.

Referensi

Ananda, N. M. S., Suyitno, S., & Siringoringo, M. (2023). Geographically Weighted Panel Regression Modelling of Human Development Index Data in East Kalimantan Province in 2017-2020. Jurnal Matematika, Statistika dan Komputasi, 19(2), 323–341. https://doi.org/10.20956/j.v19i2.23775

Armiady, D. (2022). Analisis Metode DBSCAN (Density-Based Spatial Clustering of Application with Noise) dalam Mendeteksi Data Outlier. JURIKOM (Jurnal Riset Komputer), 9(6), 2158. https://doi.org/10.30865/jurikom.v9i6.5080

Asyuti, S., & Setyawan, A. A. (2023). Data Mining Dalam Penggunaan Presensi Karyawan Denga Cluster Means. Jurnal Ilmiah Sains Teknologi Dan Informasi, 1(1).

Birant, D., & Kut, A. (2006). ST-DBSCAN: An algorithm for clustering spatial-temporal data. Data and Knowledge Engineering, 60(1). https://doi.org/10.1016/j.datak.2006.01.013

BPS. (2024). Indeks kemahalan konstruksi provinsi dan kabupaten/kota (hal. 6). Badan Pusat Statistik Indonesia.

Dong, Z., & Guo, C. (2021). A literature review of spatio-temporal data analysis. Journal of Physics: Conference Series, 1792(1). https://doi.org/10.1088/1742-6596/1792/1/012056

Fahira, A. N., & Nooraeni, R. (2023). Optimasi Parameter ST-DBSCAN dengan KNN dan Algoritma Genetika Studi Kasus: Data Bencana Alam di Pulau Jawa 2021. Jurnal Komputasi, 11(1), 24–33.

Komariaah, A., Sutanto, H., & Wafik, A. Z. (2025). Pengaruh Indeks Kemahalan Konstruksi (IKK), Investasi Swasta dan Belanja Hibah Terhadap Indeks Pembangunan Manusia (IPM) di Provinsi Nusa Tenggara Barat. Journal of Economic, Business and Accounting, 8(Cci), 1–23.

Nugroho, N., & Adhinata, F. D. (2022). Penggunaan Metode K-Means dan K-Means++ Sebagai Clustering Data Covid-19 di Pulau Jawa. Teknika, 11(3), 170–179. https://doi.org/10.34148/teknika.v11i3.502

Pribadi, W. W., Yunus, A., & Wiguna, A. S. (2022). Perbandingan Metode K-Means Euclidean Distance Dan Manhattan Distance Pada Penentuan Zonasi Covid-19 Di Kabupaten Malang. JATI (Jurnal Mahasiswa Teknik Informatika), 6(2). https://doi.org/10.36040/jati.v6i2.4808

PUPR. (2021). Konstruksi berkelanjutan. Kementrian Pekerjaan dan Perumahan Rakyat.

Sugiyono. (2013). Metode Penelitian Kuantitatif, Kualitatif dan R&D. Penerbit Alfabeta.

Suryani, B. A., Hayati, M. N., & Prangga, S. (2023). Pengelompokan Kabupaten / Kota Di Pulau Kalimantan Pembangunan Manusia Menggunakan Metode Algoritma St-Dbscan (Grouping Of Districts / Cities On Kalimantan In 2020 And 2021 Based On The Human Development Index Using The St-Dbscan Algorithm Method) Data. Jurnal Riset Pembangunan, 6, 1–9.

Walpole, R. E., Myers, R. H., Myers, S. L., & Ye, K. (2012). Probability and Statistics for Engineers and Scientists (9 ed.). Prentice Hall.

Diterbitkan

2025-12-09