Penerapan Spatial Error Model (SEM) Dalam Menganalisis Faktor-Faktor Yang Mempengaruhi Stunting Balita Di Indonesia

  • Zakiyah Mar'ah Universitas Negeri Makassar
  • Ainun Nabila Universitas Negeri Makassar
  • Ruslan Ruslan Universitas Negeri Makassar

Abstract

Stunting, a major public health concern hindering child development, remains prevalent in Indonesia. This study employs a spatial approach to analyze the prevalence and spatial patterns of stunting across 34 provinces in Indonesia in 2022. We utilize Exploratory Spatial Data Analysis (ESDA) with Moran's I to assess spatial autocorrelation and identify potential model types (e.g., Spatial Autoregressive Model (SAR), Spatial Error Model (SEM), General Spatial Model (GSM). Following this, Local Indicators of Spatial Association (LISA) can be employed to pinpoint specific spatial clusters of high or low stunting prevalence. The analysis confirms spatial autocorrelation, and subsequent modeling using a suite of spatial regression techniques (including SAR, SEM, and SARMA/GSM) reveals the SEM as the most suitable model for this study with the weighting of the queen matrix contiguity. The SEM analysis identifies two key factors influencing stunting rates: the percentage of the poor population and the percentage of infants under 6 months receiving exclusive breastfeeding. This study highlights the importance of a spatially informed approach for developing effective national and regional stunting prevention programs. By targeting interventions in provinces with high stunting clusters and addressing underlying factors like poverty and breastfeeding practices, policymakers can create more equitable resource allocation strategies to combat stunting and improve child health outcomes nationwide.

Downloads

Download data is not yet available.

References

Akolo, I. R. (2021). Perbandingan Matriks Pembobot Rook Dan Queencontiguity Dalam Analisis Spatial Autoregressive Model (SAR) Dan Spatial Error Model (SEM). Jambura Journal of Probability and Statistics, 2(February 2020), 86–95.
Alam, U. M. (2023). Perlu Terobosan dan Intervensi Tepat Sasaran Lintas Sektor untuk Atasi Stunting. Kemenko PMK. https://www.kemenkopmk.go.id/perlu-terobosan-dan-intervensi-tepat-sasaran-lintas-sektor-untuk-atasi-stunting
Anismuslim, M., Pramoedyo, H., Andarini, S., & Sudarto, S. (2023). Modeling of Risk Factors of Childhood Stunting Cases in Malang Regency using Geographically Weighted Regression (GWR). The Open Public Health Journal, 16. https://doi.org/10.2174/18749445-v16-e230420-2022-165
Arif, A., Tiro, M. A., & Nusrang, M. (2019). Perbandingan Matriks Pembobot Spasial Optimum dalam Spatial Error Model (SEM) (Kasus : Indeks Pembangunan Manusia Kabupaten/Kota di Provinsi Sulawesi Selatan Tahun 2015. VARIANSI: Journal of Statistics and Its Application on Teaching and Research, 1(3), 66–76. https://doi.org/10.35580/variansiunm12895.
Hanum, N., Dewi Yani, E., Masyudi, & Yunita. (2023). Hubungan Faktor Maternal Dengan Kejadian Stunting Pada Balita di Indonesia: Data Riskesdas 2018. Serambi Saintia Jurnal Sains Dan Aplikasi, XI(2), 60–68.
Hasandi, L. A., Maryanto, S., & Anugrah, R. M. (2019). the Correlation Between Maternal Age, Exclusive Breastfeeding and Stunting on Toddlers in Cemanggal Munding Village Semarang Regency. Jurnal Gizi Dan Kesehatan, 11(25), 1–20.
Kuse, K. A., & Debeko, D. D. (2023). Spatial distribution and determinants of stunting, wasting and underweight in children under-five in Ethiopia. 23(1), 641. https://doi.org/10.1186/s12889-023-15488-z.
Nurjanah, N., Rinaldi, A., & Putri, R. (2023). Spatial Error Model Pada Tingkat Kemiskinan Kabupaten/Kota Di Provinsi Lampung. VARIANCE: Journal of Statistics and Its Applications, 5(1), 47–54. https://doi.org/10.30598/variancevol5iss1page47-54
Putri, G. (2023). Stunting dan Pencegahannya. Kemenkes Ditjen Yankes. https://yankes.kemkes.go.id/view_artikel/2483/stunting-dan-pencegahannya
Riso, N. (2024). Penurunan Stunting dari 2022 ke 2023 Hanya 0,1%, Ma’ruf Soroti Ada Perlambatan. Kumparan News. https://kumparan.com/kumparannews/penurunan-stunting-dari-2022-ke-2023-hanya-0-1-maruf-soroti-ada-perlambatan-22NgyZsN6Es/1
Sedubun, D. R., Yudistira, Laamena, N. S., & Salhuteru, R. (2023). Penyusunan Matriks Pembobot Spasial Berbasis Konektivitas Transportasi Untuk Provinsi Berciri Kepulauan Di Indonesia. 02(02), 101–114.
Setiawati, S. (2020). Analisis Pengaruh Kebijakan Deviden Terhadap Nilai Perusahaan Pada Perusahaan Farmasi di BEI. Jurnal Inovasi Penelitian, 1(8), 1581-1590. https://stp-mataram.e-journal.id/JIP/article/view/308
Sumiaty. (2017). Menyusui Terhadap Stunting. Jurnal Ilmiah Bidan, 04(2), 1–8.
Wati, A. D. A., & Khikmah, L. (2020). Modeling Spatial Error Model (SEM) On Human Development Index (IPM) In Central Java 2018. Journal of Intelligent Computing and Health Informatics, 1(2), 48. https://doi.org/10.26714/jichi.v1i2.6341
Published
2025-04-17
How to Cite
MAR'AH, Zakiyah; NABILA, Ainun; RUSLAN, Ruslan. Penerapan Spatial Error Model (SEM) Dalam Menganalisis Faktor-Faktor Yang Mempengaruhi Stunting Balita Di Indonesia. EKSPONENSIAL, [S.l.], v. 16, n. 1, p. 41-45, apr. 2025. ISSN 2798-3455. Available at: <https://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/1465>. Date accessed: 19 apr. 2025. doi: https://doi.org/10.30872/eksponensial.v16i1.1465.