Perbandingan Regresi Robust dengan M, S, dan MM-Estimator untuk Menganalisis Faktor-Faktor yang Memengaruhi Indeks Pemberdayaan Gender di Nusa Tenggara Barat Tahun 2023
Abstract
The government has targeted gender issues in the fifth sustainable development goal, one of which is to achieve gender empowerment. The indicator used to measure gender empowerment in Indonesia is the Gender Empowerment Measure (GEM). NTB has been the province with the lowest GEM in Indonesia for five consecutive years, from 2019 to 2023. In addition, in 2023, NTB experienced a decrease in GEM of 0.19 points from 2022. This research aims to analyze factors that influence GEM in NTB in 2023. However, outliers are often found in the data which makes estimates using OLS biased. Therefore, this research uses a robust regression analysis method to overcome outliers in the data by comparing parameter estimates between M, S, and MM-estimator. The analysis results show that the best estimation method is the S-estimator because it produces the highest and the lowest residual standard error (RSE) between the M and MM-estimator. All predictor variables have a positive and significant effect on GEM, namely women's involvement in parliament , women as professionals , and women's income contribution . The S-estimator produces a of 0,999, which means that all predictor variables used can explain a proportion of GEM diversity of 99,9%, while the remainder can be explained by other variables that are not included in the model.
Downloads
References
Bappenas. (2018). Kesetaraan Gender: Mencapai Kesetaraan Gender dan Memberdayakan Kaum Perempuan. Kementerian Perencanaan Pembangunan Nasional/Badan Perencanaan Pembangunan Nasional Republik Indonesia. https://sdgs.bappenas.go.id/17-goals/goal-5/
Beauvoir, S. (2011). The Second Sex (H. M. Parshley, Ed.; 2 ed.). Jonathan Cape. https://newuniversityinexileconsortium.org/wp-content/uploads/2021/07/Simone-de-Beauvoir-The-Second-Sex-Jonathan-Cape-1956.pdf
BPS. (2024). Gender. Badan Pusat Statistik Provinsi Jawa Timur. https://jatim.bps.go.id/subject/40/gender.html
BPS. (2024, Juni 19). Indeks Pemberdayaan Gender. Badan Pusat Statistik. https://www.bps.go.id/id/statistics-table/2/NDY4IzI=/indeks-pemberdayaan-gender--idg-.html
Connell, R. (2014). Gender and Power: Society, the Person, and Sexual Politics (1 ed.). Wiley.
Filzmoser, P. (2021). Robust Statistics (hlm. 1–5). Springer, Cham. https://doi.org/10.1007/978-3-030-26050-7_425-1
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. Springer New York. https://doi.org/10.1007/978-0-387-84858-7
Hosoda, M. (2021). Promoting Gender Diversity and Inclusion at Workplace: A Case Study of a Japanese Retail and Financial Service Company. Dalam G. Eweje & S. Nagano (Ed.), CSR, Sustainability, Ethics & Governance (hlm. 189–207). Springer, Cham. https://doi.org/10.1007/978-3-030-75154-8_10
Indriani, M. M., Dwi Wicaksono, J. P., & Kusnandar, D. (2024). Perbandingan Estimasi-M, Estimasi-S, dan Estimasi-MM pada Analisis Regresi Robust untuk Menganalisis Faktor-Faktor yang Mempengaruhi Tingkat Pengangguran Terbuka di Kalimantan Barat. Jurnal Forum Analisis Statistik (FORMASI), 3(2), 90–99. https://doi.org/10.57059/formasi.v3i2.58
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to Statistical Learning. Springer US. https://doi.org/10.1007/978-1-0716-1418-1
Kutner, M. H., Nachtsheim, C. J., & Neter, J. (2016). Applied Linear Regression Models (4 ed.). McGraw-Hill Education.
Lorber, J. (2011). Gender Inequality: Feminist Theories and Politics (5 ed.). Oxford University Press.
Maronna, R. A., Martin, R. D., Yohai, V. J., & Barrera, M. S. (2019). Robust Statistics: Theory and Methods (with R) (2 ed.). Wiley.
Mirziyoyeva, Z., & Salahodjaev, R. (2022). Women’s Parliamentary Representation and Sustainable Development Goals: a Cross-Country Evidence. Applied Research in Quality of Life, 17(2), 871–883. https://doi.org/10.1007/s11482-021-09940-8
Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to Linear Regression Analysis (5 ed.). John Wiley & Sons Inc.
Neter, J., Kutner, M., Wasserman, W., & Nachtsheim, C. (1996). Applied Linear Statistical Models (4 ed.). McGraw-Hill/Irwin.
Njuki, J., Eissler, S., Malapit, H., Meinzen-Dick, R., Bryan, E., & Quisumbing, A. (2022). A Review of Evidence on Gender Equality, Women’s Empowerment, and Food Systems. Global Food Security, 33, 100622. https://doi.org/10.1016/j.gfs.2022.100622
Rusli, A. S., & Magna, M. S. (2023). Faktor-Faktor yang Mempengaruhi Indeks Pemberdayaan Gender (IDG) Kota Magelang Tahun 2011-2021. EVOKASI: Jurnal Kajian Administrasi Dan Sosial Terapan, 2(1).
Shatz, I. (2023). Assumption-Checking rather than (just) Testing: The Importance of Visualization and Effect Size in Statistical Diagnostics. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02072-x
Stock, J., & Watson, M. (2018). Introduction to Econometrics (4 ed.). Pearson Education.
Svitych, O. (2024). Amartya Sen, Karl Polanyi, and Universal Basic Income. Journal of Human Development and Capabilities, 25(1), 42–60. https://doi.org/10.1080/19452829.2023.2261858
WHO. (2024). Gender-Empowerment Measure (GEM) Value. World Health Organization. https://www.who.int/data/gho/indicator-metadata-registry/imr-details/3671
Yustie, R., & Prayitno, B. (2024). Faktor Ekonomi Dan Sosial Yang Mempengaruhi Pemberdayaan Gender. Equilibrium: Jurnal Ekonomi-Manajemen-Akuntansi, 20(1), 80. https://doi.org/10.30742/equilibrium.v20i1.3633