Penerapan Algoritma Divisive Analysis dalam Pengelompokan Provinsi di Indonesia Berdasarkan Prevalensi Stunting

  • Ari Krisna Suyono Universitas Mulia
  • Memi Nor Hayati Universitas Mulawarman
  • Meiliyani Siringoringo Universitas Mulawarman
  • Surya Prangga Universitas Mulawarman
  • M. Fathurahman Universitas Mulawarman

Abstract

Cluster analysis is an analysis that aims to group data (objects) based only on the information contained in the data that describes objects and the relationships between the objects. Divisive analysis is a clustering method using a top-down approach which starts by placing all objects into one cluster or what is called a hierarchical root and then dividing the cluster root into several smaller clusters. This research aimed to group 34 provinces in Indonesia into 2,3, and 4 clusters based on stunting prevalence data and factors causing stunting in 2022 using a divisive analysis algorithm. The results showed that for 2 clusters, cluster 1 consisted of 32 provinces with low stunting prevalence, and cluster 2 consisted of 2 provinces with high stunting prevalence. For 3 clusters, cluster 1 consisted of 26 provinces with moderate stunting prevalence, cluster 2 consisted of 6 provinces with low stunting prevalence, and cluster 3 consisted of 2 provinces with high stunting prevalence. For 4 clusters, cluster 1 consisted of 21 provinces with moderate stunting prevalence, cluster 2 consisted of 5 provinces with low stunting prevalence, cluster 3 consisted of 6 provinces with high stunting prevalence, and cluster 4 consisted of 2 provinces with very high stunting prevalence.

Downloads

Download data is not yet available.

References

Gorenescu, F. (2011). Data mining: Concept, Model, And Technique. Berlin: Springer.
Han, J., Kamber, M., & Pei, J. (2012). Data mining: Concepts and Techniques Third Edition. San Fransisco: Morgan Kauffman Publisher.
Kasoqi, I. A., Hayati, M. N., & Goejantoro, R. (2021). Pengelompokan Desa Atau Kelurahan di Kutai Kartanegara Menggunakan Algoritma Divisive Analysis. Jurnal Statistika Unimus, 9(2), 101-108.
Kementerian Kesehatan RI. (2022). Buku Saku Hasil Survei Status Gizi Indonesia. Jakarta: Kementerian Kesehatan.
Kumarahadi, B. M., Pratiwi, H., & Subanti, S. (2023). Penerapan Metode Hierarchical Clustering untuk Pengelompokan Kota/Kabupaten di Indonesia Berdasarkan Indikator Kemiskinan. Jurnal TIKomSiN, 11(2). 8 – 12.
Matjik, A. A., & Sumertajaya, M. (2011). Sidik Peubah Ganda dengan Menggunakan SAS. Bogor: IPB Press.
Montgomery, D. C. & Peck. (1992). Introduction to Linear Regression Analysis. New York: John Wiley & Sons.
Prasetyo, E. (2010). Data Mining dan Aplikasi Menggunakan MATLAB. Yogyakarta: ANDI.
Prasetyo, E. (2012). Data mining: Konsep dan Aplikasi menggunakan Matlab. Yogyakarta: Andi Offset.
Rachmatin, D., & Sawitri, K. (2019). Perbandingan Antara Metode Agglomeratif, Divisive, dan K-Means Dalam Analisis Cluster. Jurnal Pengajaran MIPA, 24(1).
Sandjojo, E. P., & Majid, T. (2017). Buku Saku Desa dalam Penanganan Stunting. Jakarta: Kementerian Desa Pembangunan Daerah Tertinggal dan Transmigrasi.
Satriawan, D., & Styawan, D. A. (2021). Pengelompokan Provinsi di Indonesia Berdasarkan Faktor Penyebab Balita Stunting Menggunakan Analisis Cluster Hierarki. Jurnal Statistika dan Aplikasinya, 5 (1). 61-70.
Supranto, J. (2010). Analisis Multivariat: Arti dan Interpretasi. Jakarta: Rineka Cipta.
Suyanto. (2017). Data mining untuk Klasifikasi dan Klasterisasi Data. Bandung: Informatika.
Vulandari, R. T. (2017). Data mining Teori dan Aplikasi Rapidminer. Yogyakarta: Penerbit Gava Media.
Published
2024-11-17
How to Cite
SUYONO, Ari Krisna et al. Penerapan Algoritma Divisive Analysis dalam Pengelompokan Provinsi di Indonesia Berdasarkan Prevalensi Stunting. EKSPONENSIAL, [S.l.], v. 15, n. 2, p. 119-127, nov. 2024. ISSN 2798-3455. Available at: <https://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/1341>. Date accessed: 10 dec. 2024. doi: https://doi.org/10.30872/eksponensial.v15i2.1341.