Pemodelan Jumlah Kasus Tuberkulosis Paru di Indonesia dengan Geographically Weighted Negative Binomial Regression
Abstract
Geographically Weighted Negative Binomial Regression (GWNBR) model is the development of Negative Binomial Regression (NBR) model applied to spatial data. The parameter estimation of GWNBR model is performed at each observation location using spatial weighting. The purpose of this study is to determine the GWNBR model of the number of pulmonary tuberculosis cases in Indonesia in 2021 and determine the factors that influence pulmonary tuberculosis cases in Indonesia in 2021. The research data are secondary data obtained from the Indonesian Ministry of Health and Indonesian Central Agency on Statistics. Parameter estimation method is Maximum Likelihood Estimation (MLE). Spatial weighting is calculated by using the Adaptive bi-square weighting function and the optimum bandwidth is determined by using the Cross-Validation (CV). The research results showed that the exact Maximum Likelihood (ML) estimator could not be obtained analytically and the approximation of ML estimator was obtained by using the Newton-Raphson iterative method. Based on the results of the parameter testing of GWNBR model, it was concluded that the factors affecting the number of tuberculosis cases were local and varied in 34 provinces. The factor affecting locally are population density, the percentage of districts/cities implementing GERMAS, and number of hospitals.
Downloads
References
Fotheringham, A., Brunsdon, C., & Charlton, M. (2002). Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. England: John Wiley & Sons, Ltd.
Hilbe, J. M. (2011). Negative Binomial Regression. New York: Cambridge University Press.
Hilbe, J. M. (2014). Modeling Count Data. New York: Cambridge University Press.
Karima, A., Suyitno, & Hayati, M. (2021). Analisis Faktor-Faktor yang Mempengaruhi Jumlah Kasus Tuberkulosis di Indonesia Menggunakan Model Geographically Weighted Poisson Regression. Jurnal Eksponensial, 12(1), 7-16. https://doi.org/10.30872/eksponensial.v12i1.754.
Keswari, N., Sumarjaya, I., & Suciptawati, N. (2014). Perbandingan Regresi Binomial Negatif dan Regresi Generalisasi Poisson dalam Mengatasi Overdispersi (Studi Kasus: Jumlah Tenaga Kerja Usaha Pencetak Genteng di Br. Dukuh, Desa Pejaten). Jurnal Matematika, 3(3), 107-115. https://doi.org/10.24843/MTK.2014.v03.i03.p072.
Ricardo, A., & Carvalho, T. (2013). Geographically Weighted Negative Binomial Regression-Incorporating Overdispersion. New York: Springer Science.
Sembiring, A. P. (2019). Faktor-Faktor yang Mempengaruhi Besar Klaim Asuransi Jiwa dengan Menggunakan Model Regresi Tobit. Jurnal Bimaster, 8(4), 729-736. https://dx.doi.org/10.26418/bbimst.v8i4.35996.
Setiawan, A. (2015). Pengantar Statistika Matematika. Semarang: Widya Sari Press Salatiga.
Simarmata, R., & Ispriyanti, D. (2011). Penanganan Overdispersi pada Model Regresi Poisson Menggunakan Model Regresi Binomial Negatif. Jurnal Media Statistika, 4(2), 95-104. https://doi.org/10.14710/medstat.4.2.95-104.
Suryani, I., Yasin, H., & Kartikasari, P. (2021). Pemodelan Jumlah Kasus Demam Berdarah Dengue (DBD) di Jawa Tengah dengan Geographically Weighted Negative Binomial Regression (GWNBR). Jurnal Gaussian, 10(1), 135-148. https://doi.org/10.14710/j.gauss.10.1.136-148.
Werdhani, R. A. (2009). Patofisiologi, Diagnosis, dan Klasifikasi Tuberkulosis. Jakarta: FKUI.
Widayaka, P., Mustafid., & Rahmawati, R. (2016). Pendekatan Mixed Geographically Weighted Regression untuk Pemodelan Pertumbuhan Ekonomi Menurut Kabupaten/Kota di Jawa Tengah. Jurnal Gaussian, 5(4), 727-736. https://doi.org/10.14710/j.gauss.5.4.727-736.
World Health Organization. (2016). Global Tuberculosis Report 2016. Geneva: World Health Organization.
World Health Organization. (2020). Global Tuberculosis Report 2020. Geneva: World Health Organization.
Yasin, H. (2011). Pemilihan Variabel pada Model Geographically Weighted Regression. Jurnal Media Statistika, 4(2), 63-72. https://doi.org/10.14710/medstat.4.2.63-72.