Peramalan Curah Hujan di Kota Samarinda Menggunakan Autoregressive Integrated Moving Average (ARIMA)

  • Al Fitri Syawal Laboratorium Statistika Ekonomi dan Bisnis Program Studi Statistika FMIPA Universitas Mulawarman
  • Sri Wahyuningsih Laboratorium Statistika Ekonomi dan Bisnis Program Studi Statistika FMIPA Universitas Mulawarman
  • Meiliyani Siringoringo Laboratorium Statistika Ekonomi dan Bisnis Program Studi Statistika FMIPA Universitas Mulawarman

Abstract

Autoregressive Integrated Moving Average (ARIMA) is a forecasting model for time series data analysis. In this study, the modeling and forecasting of monthly rainfall in Samarinda City was carried out using the ARIMA model. The results showed that the ARIMA (6, 1, 1) model was the best model . The results of forecasting rainfall for the period January to December 2022 in Samarinda City using the ARIMA (6, 1, 1) model show that rainfall tends to be constant every month. The lowest level of rainfall occurred in January 2022, which was 210.3869 mm. The highest level of rainfall occurred in April 2022, which was 271.5705 mm.

Downloads

Download data is not yet available.

References

Aldrian E, Budiman, Mimin K. (2011). Adaptasi dan Migrasi Perubahan Iklim di Indonesia. Jakarta(ID): BMKG.
Aswi & Sukarna. (2006). Analisis Runtun Waktu Aplikasi dan Teori. Makassar: Andira Publisher.
[BMKG] Badan Meteorologi Klimatologi dan Geofisika. (2013). Jangan Abaikan Informasi Cuaca Jakarta (ID): BMKG.
Box, G.E.P. & G.M.Jankins. (1976). Time Series Analysis Forecasting and Control. Edisi Revisi. San Fransisco: Holden day.
BPS. (2021). Kota Samarinda dalam Angka 2021. Samarinda : Badan Pusat Provinsi Samarinda.https://samarindakota.bps.go.id. (16 Juni 2022).
Cryer, J.D. & Chan, K.S. (2008). Time Series Analysis with Application in R. Iowa City: Springer.
Hanke, J.E & Wicheren DW. (2005). Business Forcecasting. 8th edition. Fngewood: Cliffs Prentice Hall.
Hidayah. S.L.I.A (2015). Perbandingan Model ARIMA dan Fungsi Transfer pada Peramalan Curah Hujan Kabupaten Wonosobo. Jurnal Gaussian, 2339-2541.
Gujarati, D. N. (2003). Ekonometrika Dasar. Jakarta: Erlangga.
Makridakis, S., Wheelwright, S.C. & Hyndman, R.J. (1998). Forcasting: Method and Aplication. Wiley: New York.
Salamah, M., Suhartono & Wulandari, S. (2003). Buku Ajar: Analisis Time Series. Surabaya: Institut Teknologi Sepuluh November.
Sholihin, I. N., Mustafid & Safitri, D. (2014). Analisis Faktor Konfirmatori Strategi Positoning Pasar Indomaret (Studi Kasus Wilayah Tembalang Kota Semarang). Jurnal Gaussian, 3(3), 431-440.
Soewarno. (2000). Hidrologi Operasional. Jilid kesatu. Bandung: Citra Aditya.
Wei, W. W. S. (2006). Time Series Analysis Univariate and Multivariate Methods (Second Edition). Boston: Pearson AddisonWesley.
Widarjono, A. (2007). Ekonometrika: Teori dan Aplikasi untuk Ekonomi dan Bisnis. Yogyakarta: Ekonisia.
Published
2022-11-01
How to Cite
SYAWAL, Al Fitri; WAHYUNINGSIH, Sri; SIRINGORINGO, Meiliyani. Peramalan Curah Hujan di Kota Samarinda Menggunakan Autoregressive Integrated Moving Average (ARIMA). EKSPONENSIAL, [S.l.], v. 13, n. 2, p. 153-160, nov. 2022. ISSN 2798-3455. Available at: <https://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/1058>. Date accessed: 10 dec. 2024. doi: https://doi.org/10.30872/eksponensial.v13i2.1058.
Section
Articles