Model Regresi Weibull Pada Data Kontinu yang Diklasifikasikan

Studi Kasus: Indikator Pencemaran Air BOD di DAS Mahakam Tahun 2016

  • Hesty Dwiyugo Panduwinata Laboratorium Statistika Terapan FMIPA Universitas Mulawarman
  • Suyitno Suyitno Laboratorium Statistika Terapan FMIPA Universitas Mulawarman
  • Moh. Nurul Huda Laboratorium Matematika Komputasi FMIPA Universitas Mulawarman

Abstract

Weibull Regression is a model of regression developed from Weibull distribution in which scale parameter is expressed in the regression parameters. The Weibull regression models discussed in this study are the Weibull survival regression, Weibull hazard regression and regression model for the mean. The Weibull survival regression model is a model of the probability that the Mahakam River water is polluted. The Weibull hazard regression model is a model of velocity of the polluted Mahakam River water, and the Weibull regression for the mean is the model used to predict the average value of BOD (Biochemical Oxygen Demand).  The purpose of this study was to obtain the Weibull regression model on BOD water pollution indicator data in the Mahakam River basin, to determine the factors that influence the Weibull regression model. The parameter method is maximum likelihood estimation (MLE). Based on the parameter estimation results, the maximum likelihood estimator is obtained by using the method of Newton-Raphson iteration. The results of hypothesis testing, it is concluded that the factors that influence the Weibull regression model are pH, Total Dissolved Solid (TDS) and water discharge.

Downloads

Download data is not yet available.

References

Hanagal, D.D. (2004). Parametric Bivariat Regression Analysis Based on Censored Samples: A Weibull Model. Econometric Quality Control, 19(1).
Hanagal, D.D (2005). Bivariate Weibull Regression Model. Economic Quality Control, 20(1).
Hosmer, D.W, Lemeshow,S & May, S. (2008). Applied Survival Analysis Regression Modelling of Time-to-Event Data 2nd Edition. New Jersey: John Wiley & Sons.
Khuri, A.I. (2003). Advanced Calculus with Application in Statistics 2nd Edition. New Jersey: John Wiley & Sons, Inc., Hoboken.
Lawless, J.F. (2003). Statistical Models and Methods for Lifetime Data 2nd Edition. New Jersey: John Wiley & Sons, Inc., Hoboken.
Mufidah, S.A., & Purhadi. (2016). Analisis Survival Pada Pasien Demam Berdarah Dengue (DBD) di RSU Haji Surabaya Menggunakan Model Regresi Weibull. Jurnal Sains dan Seni ITS, 5(2).
Pawitan, Y. (2001). In All Likelihood Statistical Modelling and Inference Using Likelihood. Sweden: Clarendon Press-Oxford.
Rencher, A.C., & Schaalje, G.B. (2008). Linier Models in Statistics:Second Edition. New Jersey: John Wiley & Sons, Inc., Hoboken.
Rinne, H. (2009). The Weibull Distribution A Handbook. New York: CRC Press Taylor and Francis Group.
Suliyanto, Dr. (2014). Statistika Non Parametrik (Dalam Aplikasi Penelitian). Yogyakarta:CV. Andi Offset.
Suyitno. (2017). Penaksiran Parameter dan Pengujian Hipotesis Model Regresi Weibull Univariat. Jurnal Eksponensial, 8(2), Nopember 2017.
Published
2022-11-01
How to Cite
PANDUWINATA, Hesty Dwiyugo; SUYITNO, Suyitno; HUDA, Moh. Nurul. Model Regresi Weibull Pada Data Kontinu yang Diklasifikasikan. EKSPONENSIAL, [S.l.], v. 13, n. 2, p. 123-130, nov. 2022. ISSN 2798-3455. Available at: <https://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/1051>. Date accessed: 10 dec. 2024. doi: https://doi.org/10.30872/eksponensial.v13i2.1051.
Section
Articles