Peramalan Jumlah Kunjungan Wisatawan Mancanegara Ke Indonesia Menggunakan Autoregressive Integrated Moving Average (ARIMA)

  • Adelia Ramadhani Laboratorium Statistika Ekonomi dan Bisnis, FMIPA Universitas Mulawarman
  • Sri Wahyuningsih Laboratorium Statistika Ekonomi dan Bisnis, FMIPA Universitas Mulawarman
  • Meiliyani Siringoringo Laboratorium Statistika Ekonomi dan Bisnis, FMIPA Universitas Mulawarman

Abstract

Autoregressive Moving Average (ARIMA) is a general model that is often used in time series modeling. One application of ARIMA can be used on the data foreign tourist visits to Indonesia. The tourism sector is one of the priority sectors in Indonesia's economic development. One of the determining factors in the tourism sector is the number of foreign tourist visits. Therefore, forecasting the number of foreign tourist visits is very necessary. The purpose of this study was to obtain a model and forecast results for the number of foreign tourist visits from March 2020 to October 2021 using the ARIMA model. The results of the analysis showed that the ARIMA model (0,1,1) was the best model with a MAPE of 6.23%. The forecasting results with the best model showed that the highest number of foreign tourist visits is in Agustus 2021 and the lowest is in December 2020.

Downloads

Download data is not yet available.

References

Aswi & Sukarna. (2006). Analisis Deret Waktu Aplikasi dan Teori. Makassar: Andira Publisher.
BPS. (2021). Statistik Kunjungan Wisatawan Mancanegara Tahun 2020. Indonesia: Badan Pusat Statistik.
Fitri A., Purnamasari, I., & Siringoringo, M. (2019) Peramalan Jumlah Wisatawan Mananegara Model ARIMA. Jurnal Statistika Universitas Muhammadiyah Semarang,7(1), 14-19.
Husnita, F., Wahyuningsih, S., dan Nohe, D. A. (2015). Analisis Spektral dan Model ARIMA untuk Peramalan Jumlah Wisatawan di Dunia Fantasi Taman Impian Jaya Ancol. Jurnal Eksponensial, 6(1), 21-29.
Makridakis, S., Wheelwright, S.C., & McGree, V.E. (1999). Metode dan Aplikasi Peramalan (edisi ke-2). Jakarta: Erlangga.
Rosadi, D. (2011). Ekonometrika & Analisis Runtun Waktu Terapan dengan Eviews. Yogyakarta: Penerbit ANDI.
Salamah, M., Suhartono & Wulandari, S.P. (2003). Buku Ajar Analisis Time Series. Surabaya: Institut Teknologi Sepuluh Nopember.
Saputra, A.R., Wahyuningsih, S., & Siringoringo, M. (2021). Peramalan Jumlah Titik Panas Provinsi Kalimantan Timur Menggunakan Analisis Intervensi Fungsi Pulse. Jurnal Eksponensial, 12(1), 93-101.
Sari, R.N., Mariani, S., & Hendikawati, P. (2016). Analisis Intervensi Fungsi Step Pada Harga Saham (Studi Kasus Saham PT Fast Food Indonesia Tbk). UNNES Journal of Mathematics, 5(2), 181-189.
Wei, W. S. (2006). Time Series Analysis: Univariate and Multivariate Methods (2nd Edition). New York: Addison Wesley Publishing Company.
Published
2022-11-01
How to Cite
RAMADHANI, Adelia; WAHYUNINGSIH, Sri; SIRINGORINGO, Meiliyani. Peramalan Jumlah Kunjungan Wisatawan Mancanegara Ke Indonesia Menggunakan Autoregressive Integrated Moving Average (ARIMA). EKSPONENSIAL, [S.l.], v. 13, n. 2, p. 103-112, nov. 2022. ISSN 2798-3455. Available at: <https://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/1049>. Date accessed: 10 dec. 2024. doi: https://doi.org/10.30872/eksponensial.v13i2.1049.
Section
Articles