Perbandingan Pengelompokan K-Means dan K-Medoids Pada Data Potensi Kebakaran Hutan/Lahan Berdasarkan Persebaran Titik Panas

(Studi Kasus : Data Titik Panas Di Indonesia Pada 28 April 2018)

  • Athifaturrofifah Athifaturrofifah aboratorium Statistika Komputasi FMIPA Universitas Mulawarman
  • Rito Goejantoro aboratorium Statistika Komputasi FMIPA Universitas Mulawarman
  • Desi Yuniarti Laboratorium Statistika Ekonomi dan Bisnis FMIPA Universitas Mulawarman

Abstract

The cases of forest/land fires in Indonesia seem endless, almost every year in the dry season similar problems always occur. Some areas in Indonesia often occur in forest fires and result in losses of up to trillions of rupiah.  Various ways have been made to help the government in minimizing the potential for forest or land fires, one of them is by monitoring hot spots. In this study using data hot spots with parameters of latitude, longitude, brightness, fire radiation power and confidence by using the method of grouping K-Means and K-Medoids. The difference between these two methods is that the K-means method uses the mean as the center of the cluster, while K-Medoids uses representative objects (medoids) as the center of the cluster. This study aims to compare the results of the grouping of K-Means method with K-Medoids by using 42 data. The results of this study indicate that the K-Means method produces Silhouette Coefficient scores greater than K-Medoids. So that, K-Means can provide more accurate grouping results with a greater Silhouette Coefficient value.

Published
2020-02-01
How to Cite
ATHIFATURROFIFAH, Athifaturrofifah; GOEJANTORO, Rito; YUNIARTI, Desi. Perbandingan Pengelompokan K-Means dan K-Medoids Pada Data Potensi Kebakaran Hutan/Lahan Berdasarkan Persebaran Titik Panas. JURNAL EKSPONENSIAL, [S.l.], v. 10, n. 2, p. 143-152, feb. 2020. ISSN 2085-7829. Available at: <http://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/572>. Date accessed: 19 sep. 2020.